The interplay between copper(II), human serum albumin, fatty acids, and carbonylating agent interferes with Cys 34 thiol reactivity and copper binding

  • Ana Z. PenezićEmail author
  • Jelena M. Aćimović
  • Ivan D. Pavićević
  • Vesna B. Jovanović
  • Marija Takić
  • Ljuba M. Mandić
Original Paper


Cys34 thiol group of human serum albumin (HSA) represents major plasma antioxidant. Its reactivity is influenced by multiple factors. The influence of fatty acids (FA; saturated, mono, and poly unsaturated acids from fish oil) binding to HSA, on copper(II) binding affinity and Cys34 thiol group accessibility/reactivity, in the presence of carbonylation agent (methylglyoxal, MG) was examined. HSA–copper(II) content, thiol group reactivity, and HSA carbonylation level were monitored spectrophotometrically. Changes in HSA were followed by fluorescence spectroscopy and native PAG electrophoresis. FA/HSA molar ratio was screened by GC. Together, binding of copper(II) ions and FA to HSA increase the reactivity of Cys34 thiol group (depending on the type of FA), with constant contribution of copper(II) ions of one-third. Carbonylation of FA–HSA–Cu(II) complexes caused a decrease in the Cys34 thiol group content, accompanied by a decrease in the content of HSA-bound copper. The carbonylation level of guanidine groups was not affected by FAs and copper(II) binding. Fluorescent emission spectra of FA–HSA–Cu(II)–MG complexes showed conformational changes in HSA molecule. Although binding of fatty acids and copper ions caused a significant increase in the thiol group reactivity, Cys34 thiol from FA–HSA–Cu(II) complexes reacted with MG in smaller extent than expected, probably as a consequence of conformational changes introduced by carbonylation. Increase in the percentage of reacted-free thiol groups with MG (due to FA and copper binding) may not seem to be very significant, but it is very important in complex biological systems, where catalytic metal is present.

Graphical abstract


Human serum albumin Copper(II) Fatty acids Carbonylation HSA Cys34 thiol group reactivity 



Fatty acids


Myristic acid


Oleic acid


Stearic acid


Fish oil fatty acids


Human serum albumin


Defatted HSA


Complex HSA with FA and copper(II) ion


Cys34 free thiol group of HSA




HSA modified with MG


(5,5′dithiobis-(2-nitrobenzoic acid)



This work was supported by The Ministry of Education, Science and Technological Development of Serbia with Grant no. 172049. The authors acknowledge support of the FP7 RegPot Project FCUB ERA GA no. 256716.


  1. 1.
    Evans TW (2002) Review article: albumin as a drug—biological effects of albumin unrelated to oncotic pressure. Alim Pharmacol Ther 16(Suppl. 5):6–11CrossRefGoogle Scholar
  2. 2.
    Peters T Jr (1995) All about albumin: biochemistry, genetics, and medical applications, 1st edn. Academic, New YorkGoogle Scholar
  3. 3.
    Larsen MT, Kuhlmann M, Hvam ML, Howard KA (2016) Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 4:3CrossRefGoogle Scholar
  4. 4.
    Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787CrossRefGoogle Scholar
  5. 5.
    Anguizola J, Matsuda R, Barnaby OS et al (2013) Review: glycation of human serum albumin. Clin Chim Acta 425:64–76CrossRefGoogle Scholar
  6. 6.
    Sogami M, Nagoka S, Era S, Honda M, Noguchi K (1984) Resolution of human mercapt- and nonmercaptalbumin by high-performance liquid chromatography. Int J Pept Protein Res 24(2):96–103CrossRefGoogle Scholar
  7. 7.
    Watanabe H, Imafuku T, Otagiri M, Maruyama T (2017) Clinical implications associated with the posttranslational modification-induced functional impairment of albumin in oxidative stress related diseases. J Pharm Sci 106(9):2195–2203CrossRefGoogle Scholar
  8. 8.
    Rondeau P, Bourdon E (2010) The glycation of albumin: structural and functional impacts. Biochimie 93:645–658CrossRefGoogle Scholar
  9. 9.
    Rabbani N, Xue M, Thornalley PJ (2016) Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci 130:1677–1696CrossRefGoogle Scholar
  10. 10.
    Mera K, Takeo K, Izumi M, Maruyama T, Nagai R, Otagiri M (2010) Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. J Pharm Sci 99:1614–1625CrossRefGoogle Scholar
  11. 11.
    Vetter SW, Indurthi VS (2011) Moderate glycation of serum albumin affects folding, stability, and ligand binding. Clin Chim Acta 412(23–24):2105–2116CrossRefGoogle Scholar
  12. 12.
    Yamato M, Shiba T, Yoshida M, Ide T, Seri N, Kudou W, Kinugawa S, Tsutsui H (2007) Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin. FEBS J 274:3855–3863CrossRefGoogle Scholar
  13. 13.
    Kitamura K, TakegamiI S, Tanaka R, Omran AA, Kitade T (2014) Effect of long-chain fatty acids on the binding of triflupromazine to human serum albumin: a spectrophotometric study. Sci Pharm 82:233–245CrossRefGoogle Scholar
  14. 14.
    Curry S, Brick P, Franks NP (1999) Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochem Biophys Acta 1441:131–140PubMedGoogle Scholar
  15. 15.
    Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Struct Biol 5(9):827–835CrossRefGoogle Scholar
  16. 16.
    Pavićević ID, Jovanović VB, Takić MM, Penezić AZ, Aćimović JM, LjM Mandić (2014) Fatty acids binding to human serum albumin: changes of reactivity and glycation level of Cysteine-34 free thiol group with methylglyoxal. Chem Biol Interact 224:42–50CrossRefGoogle Scholar
  17. 17.
    Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67(suppl):952S–959SCrossRefGoogle Scholar
  18. 18.
    Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress and human health. Mol Aspects Med 26(4–5):268–298CrossRefGoogle Scholar
  19. 19.
    Bonham M, O’Connor JM, Hannigan BM, Strain JJ (2002) The immune system as aphysiological indicator of marginal copper status? Br J Nutr 87(5):393–403CrossRefGoogle Scholar
  20. 20.
    Rozga M, Sokolowska M, Protas AM, Bal W (2007) Human serum albumin coordinates Cu(II) at its N-terminal binding site with 1 pM affinity, JBIC. J Biol Inorg Chem 12:913–918CrossRefGoogle Scholar
  21. 21.
    Bal W, Sokolowska M, Kurowska E, Faller P (2013) Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta 1830:5444–5455CrossRefGoogle Scholar
  22. 22.
    Ahmed MA, Frye EB, Thorpe SR, Baynes JW (1997) N-(Carboxymethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J 324:565–570CrossRefGoogle Scholar
  23. 23.
    Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR (1996) The advanced glycation end products. N-(carboxymethyl)lysine, is a product of lipid peroxidation and glycoxidation reactions. J Biol Chem 271:9982–9986CrossRefGoogle Scholar
  24. 24.
    Thornalley PJ (2005) Dicarbonyl intermediates in the maillard reaction. Ann N Y Acad Sci 1043:111–117CrossRefGoogle Scholar
  25. 25.
    Rabbani N, Xue M, Thornalley PJ (2016) Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj J 33:513–525CrossRefGoogle Scholar
  26. 26.
    Lapolla A, Flamini R, Dalla Vedova A, Senesi A, Reitano R, Fedele D, Basso E, Seraglia R, Traldi P (2003) Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med 41:1166–1173CrossRefGoogle Scholar
  27. 27.
    Cistola DP, Small DM (1991) Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study. J Clin Invest 87:1431–1441CrossRefGoogle Scholar
  28. 28.
    Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, Loureiro M, Patrício M, Antunes M, Carvalho E (2016) Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am J Physiol Endocrinol Metab 310(7):E550–E564CrossRefGoogle Scholar
  29. 29.
    Maessen DEM, Stehouwer CDA, Schalkwijk CG (2015) The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci 128:839–861CrossRefGoogle Scholar
  30. 30.
    Penezić AZ, Jovanović VB, Pavićević ID, Aćimović JM, LjM Mandić (2015) HSA carbonylation with methylglyoxal and the binding/release of copper(II) ions. Metallomics 7(10):1431–1438CrossRefGoogle Scholar
  31. 31.
    Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18CrossRefGoogle Scholar
  32. 32.
    Walter RM, Uriu-Hare JY, Olin KL, Oster MH, Anawalt BD, Critchfield JW, Keen CL (1991) Copper, zinc, manganese, and magnesium status and complications of diabetes mellitus. Diabetes Care 14(11):1050–1056CrossRefGoogle Scholar
  33. 33.
    Ford ES (2000) Serum copper concentration and coronary heart disease among US adults. Am J Epidemiol 151(12):1182–1188CrossRefGoogle Scholar
  34. 34.
    Gryzunov YA, Arroyo A, Vigne J-L, Zhao Q, Tyurin VA, Hubel CA, Gandley RE, Vladimirov YA, Taylor RN, Kagan VE (2003) Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper–albumin complexes from antioxidants to prooxidants. Arch Biochem Biophys 413:53–66CrossRefGoogle Scholar
  35. 35.
    Chen RF (1967) Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem 242:173–181PubMedGoogle Scholar
  36. 36.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  37. 37.
    Aćimović JM, Jovanović VB, Dimitrijević Srećković V, Penezić Romanjuk AZ, LjM Mandić (2013) Monitoring of the human serum albumin carbonylation level through determination of guanidino group content. Anal Biochem 433:162–167CrossRefGoogle Scholar
  38. 38.
    Petitpas I, Grüne T, Bhattacharya AA, Curry S (2001) Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J Mol Biol 314:955–960CrossRefGoogle Scholar
  39. 39.
    Bhattacharya AA, GruÈne T, Curry S (2000) Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol 303:721–732CrossRefGoogle Scholar
  40. 40.
    Christodoulou J, Sadler PJ, Tucker A (1995) 1H NMR of albumin in human blood plasma: drug binding and redox reactions at Cys 34. FEBS Lett 376:1–5CrossRefGoogle Scholar
  41. 41.
    Blache D, Bourdon E, Salloignon P, Lucchi G, Ducoroy P, Petit J-M, Verges B, Lagrost L (2015) Glycated albumin with loss of fatty acid binding capacity contributes to enhanced arachidonate oxygenation and platelet hyperactivity: relevance in patients with type 2 diabetes. Diabetes 64(3):960–972CrossRefGoogle Scholar
  42. 42.
    Aćimović JM, Stanimirović BD, LjM Mandić (2009) The role of the thiol group in protein modification with methylglyoxal. J Serb Chem Soc 74(8–9):867–883CrossRefGoogle Scholar
  43. 43.
    Westwood ME, Thornalley PJ (1995) Molecular characteristics of methylglyoxal modified bovine and human serum albumins: comparison with glucose derived advanced glycation endproduct-modified serum albumins. Protein Chem. 14:359–372CrossRefGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • Ana Z. Penezić
    • 2
    Email author
  • Jelena M. Aćimović
    • 1
  • Ivan D. Pavićević
    • 1
  • Vesna B. Jovanović
    • 1
  • Marija Takić
    • 3
  • Ljuba M. Mandić
    • 1
  1. 1.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for the Application of Nuclear Energy, INEPBelgradeSerbia
  3. 3.Laboratory for Nutrition and Metabolism, Institute for Medical ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations