Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 6, pp 917–927 | Cite as

Antenna effect and phosphorescence spectra to find the location of drug tetracycline in bovine β-lactoglobulin A

  • Moumita Mukherjee
  • Pinki Saha Sardar
  • Pritam Roy
  • Swagata Dasgupta
  • Maitrayee Basu Roy
  • Sanjib Ghosh
Original Paper

Abstract

A ternary system comprising of a Eu(III) complex of the drug Tetracycline hydrochloride (Eu3TC) bound to bovine β-lactoglobulin variant A (BLGA) in aqueous buffer at physiological pH (pH = 7.4) has been investigated to exploit the enhanced “antenna effect” to locate the bound drug and find the microenvironment of the binding site. Steady-state and time-resolved emission studies at room temperature as well as at 77 K have been carried out to evaluate the binding parameters in the binary system consisting of BLGA and tetracycline hydrochloride (TC). Low-temperature phosphorescence studies at 77 K of pure BLGA confirm Trp 19 to be the emitting residue, while Trp 61 is silent. Enhancement of BLGA phosphorescence emission in the ternary system at 77 K indicates that Trp 19 is very close to Eu(III) in the Eu3TC complex. The molecular docking results further confirm that TC binds close to Trp 19 in a hydrophobic domain. The results thus obtained can provide guidelines to design and synthesize target-oriented drugs as well as suitable bio-probes.

Graphical abstract

Keywords

Antenna effect Bovine β-lactoglobulin Tetracycline Fluorescence Phosphorescence Accessible surface area 

Notes

Acknowledgements

S. G. gratefully acknowledges the Department of Science and Technology (DST), Government of India (Grant no.: SB/S1/PC-003/2013), and MBR gratefully acknowledges UGC [Minor Research Project No.F.PS-146/15-16 (ERO)] for financially supporting this work.

Supplementary material

775_2018_1591_MOESM1_ESM.doc (648 kb)
Supplementary material 1 (DOC 648 kb)

References

  1. 1.
    Wong DWS, Camirand WM, Pavlath AE (1996) Structures and functionalities of milk proteins. Crit Rev Food Sci Nutr 36:807–844CrossRefPubMedGoogle Scholar
  2. 2.
    Sawyer L, Kontopidis G (2000) The core lipocalin, bovine β-lactoglobulin. Biochim Biophys Acta 1482:136–148CrossRefPubMedGoogle Scholar
  3. 3.
    Dong A, Matsuura J, Allison SD, Chrisman E, Manning MC, Carpenter JF (1996) Infrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B. Biochemistry 35:1450–1457CrossRefPubMedGoogle Scholar
  4. 4.
    Qin BY, Bewley MC, Creamer LK, Baker HM, Baker EN, Jameson GB (1998) Structural basis of the Tanford transition of bovine β-lactoglobulin. Biochemistry 37:14014–14023CrossRefPubMedGoogle Scholar
  5. 5.
    Chobert JM, Haertlé T (1997) Protein-lipid and protein–flavor interactions. In: Damodaran S, Paraf A (eds) Food proteins and their applications. Marcel-Dekker, New York, pp 143–170Google Scholar
  6. 6.
    Hambling SM, McAlpine AS, Sawyer L (1992) β-Lactoglobulin. In: Fox PF (ed) Advanced dairy chemistry 1: proteins. Elsevier, London, pp 141–190Google Scholar
  7. 7.
    Kontopidis G, Holt C, Sawyer L (2002) The ligand-binding site of bovine [β]-lactoglobulin: evidence for a function? J Mol Biol 318:1043–1055CrossRefPubMedGoogle Scholar
  8. 8.
    Wu SY, Pérez MD, Puyol P, Sawyer L (1999) β-Lactoglobulin binds palmitate within its central cavity. J Biol Chem 274:170–174CrossRefPubMedGoogle Scholar
  9. 9.
    Selzer MG, Zhu B, Block NL, Lokeshwar BL (1999) CMT-3, a chemically modified tetracycline, inhibits bony metastases and delays the development of paraplegia in a rat model of prostate cancer. Ann N Y Acad Sci 878:882CrossRefGoogle Scholar
  10. 10.
    Rudek M, Figg W, Dyer V, Dahut W, Turner M, Steinburg S (2000) A phase I clinical trial of oral Col-3, a matrix metalloproteinase inhibitor, administered daily in patients with refractory metastatic cancer [abstract]. Proc Am Assoc Cancer Res 41:612Google Scholar
  11. 11.
    Kroon AM, Dontje BH, Holtrop M, Van den Bogert C (1984) The mitochondrial genetic system as a target for chemotherapy: tetracyclines as cytostatics. Cancer Lett 25:33–40CrossRefPubMedGoogle Scholar
  12. 12.
    Duivenvoorden WC, Hirte HW, Singh G (1997) Use of tetracycline as an inhibitor of matrix metalloproteinase activity secreted by human bone-metastasizing cancer cells. Invasion Metastasis 17:312–322PubMedGoogle Scholar
  13. 13.
    Rubins JB, Charboneau D, Alter MD, Bitterman PB, Kratzke RA (2001) Inhibition of mesothelioma cell growth in vitro by doxycycline. J Lab Clin Med 138:101–106CrossRefPubMedGoogle Scholar
  14. 14.
    Tolomeo M, Grimaudo S, Milano S, La Rosa M, Ferlazzo V, Di Bella G (2001) Effects of chemically modified tetracyclines (CMTs) in sensitive, multidrug resistant and apoptosis resistant leukaemia cell lines. Br J Pharmacol 133:306–314CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Viseu MI, Carvalho TI, Costa SMB (2004) Conformational transitions in [beta]- lactoglobulin induced by cationic amphiphiles: equilibrium studies. Biophys J 86:2392–2402CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Creamer LK (1995) Effect of sodium dodecyl sulfate and palmitic acid on the equilibrium unfolding of bovine beta-lactoglobulin. Biochemistry 34:7170–7176CrossRefPubMedGoogle Scholar
  17. 17.
    Sakai K, Sakurai K, Sakai M, Hoshino M, Goto Y (2000) Conformation and stability of thiol-modified bovine [beta] lactoglobulin. Protein Sci 9:1719–1729PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ghorai SK, Samanta SK, Mukherjee M, Saha Sardar P, Ghosh S (2013) Tuning of “antenna effect” of Eu(III) in ternary systems in aqueous medium through binding with protein. Inorg Chem 52:1476–1487CrossRefPubMedGoogle Scholar
  19. 19.
    Ghorai SK, Samanta SK, Mukherjee M, Ghosh S (2012) Protein-mediated efficient synergistic “antenna effect” in a ternary system in D2O medium. J Phys Chem A 116:8303–8312CrossRefPubMedGoogle Scholar
  20. 20.
    Samanta SK, Ghorai SK, Ghosh S (2013) Efficient “antenna effect” in the complex of (+) catechin and Tb(III) lodged inside the nano-cavity of β-cyclodextrin. J Photochem Photobiol A 252:145–151CrossRefGoogle Scholar
  21. 21.
    Samanta SK, Sanyal S, Samanta S, Ghosh S (2015) Designing hydrophobic sheet protected Eu(III)-tetracycline complex using long chain unsaturated fatty acid: efficient ‘antenna effect’ in aqueous medium. J Lumin 160:262–270CrossRefGoogle Scholar
  22. 22.
    Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw Hill, New York, pp 235–237Google Scholar
  23. 23.
    FELIX 32, version 1.1 (2003) Operation manual. Photon Technology International, EdisonGoogle Scholar
  24. 24.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov LN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242CrossRefPubMedGoogle Scholar
  25. 25.
    Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489CrossRefPubMedGoogle Scholar
  26. 26.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 13:1605–1612CrossRefGoogle Scholar
  27. 27.
    Hubbard SJ, Thorton JM (1993) NACESS computer program. Department of Biochemistry and Molecular Biology, University College, LondonGoogle Scholar
  28. 28.
    Courrol LC, Samad RE (2008) Applications of Europium tetracycline complex: a review. Curr Pharm Anal 4:238–248CrossRefGoogle Scholar
  29. 29.
    Courrol LC, de Oliveira SFR, Gomes L, Júnior NDV (2007) Energy transfer study of europium–tetracycline complexes. J Lumin 122:288–290CrossRefGoogle Scholar
  30. 30.
    Ghorai SK, Tripathy DR, Dasgupta S, Ghosh S (2014) Location and binding mechanism of an ESIPT probe 3-hydroxy-2-napthoic acid in unsaturated fatty acid bound serum albumins. J Photochem Photobiol B 131:1–15CrossRefPubMedGoogle Scholar
  31. 31.
    Mukherjee M, Saha Sardar P, Ghorai SK, Samanta SK, Roy AS, Dasgupta S, Ghosh S (2012) Interaction of multitryptophan protein with drug: an insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking. J Photochem Photobiol B 115:93–104CrossRefPubMedGoogle Scholar
  32. 32.
    Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66:455–458CrossRefGoogle Scholar
  33. 33.
    Mehraban MH, Odooli S, Yousefi R, Roghanian R, Motovali-Bashi M, Moosavi-Movahedi A (2017) The interaction of beta-lactoglobulin with ciprofloxacin and kanamycin; a spectroscopic and molecular modeling approach. J Biomol Struct Dyn 35(9):1968–1978CrossRefPubMedGoogle Scholar
  34. 34.
    Bi SY, Song DQ, Ding L, Tian Y, Zhou X, Liu X (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta Part A 61:629–636CrossRefGoogle Scholar
  35. 35.
    Mukherjee M, Saha Sardar P, Ghorai SK, Samanta SK, Singha Roy A, Dasgupta S, Ghosh S (2013) A comparative study of interaction of tetracycline with several proteins using time resolved anisotropy, phosphorescence, docking and FRET. Plos One 8:60940–60956CrossRefGoogle Scholar
  36. 36.
    Mohammadi F, Sahihi M, Bordbar AK (2015) Multispectroscopic and molecular modeling studies on the interaction of two curcuminoids with β-lactoglobulin. Spectrochim Acta Part A Mol Biomol Spectrosc 140:274–282CrossRefGoogle Scholar
  37. 37.
    Mohammadi F, Bordbar AK, Mohammadi K, Divsalar A, Saboury AA (2015) Circular dichroism and fluorescence spectroscopic study on the interaction of bisdemethoxycurcumin and diacetylbisdemethoxycurcumin with human serum albumin. Can J Chem 88:155–163CrossRefGoogle Scholar
  38. 38.
    Lehrer S (2015) Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263CrossRefGoogle Scholar
  39. 39.
    Benesi AH, Hilderbrand JHJ (1949) A Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707CrossRefGoogle Scholar
  40. 40.
    Pal A, Maity SS, Samanta S, Saha Sardar P, Ghosh S (2010) Interaction of the excited state intramolecular proton transfer probe 3- hydroxy—2- naphthoic acid with poly N- Vinyl -2- pyrrolidone polymer in water: an insight into the water structure in the binding region. J Luminescence 130:1975–1982CrossRefGoogle Scholar
  41. 41.
    Samanta S, Sanyal S, Samanta S, Ghosh S (2015) Confirmation for designing hydrophobic sheet protected Eu(III)-tetracycline complex using long chain unsaturated fatty acid—efficient ‘antenna effect’ in aqueous medium. J. Luminiscence 160:262–270CrossRefGoogle Scholar
  42. 42.
    Supkowski RM, Horrocks WD (2002) On the determination of the number of water molecules, q, coordinated to europium(III) ions in solution from luminescence decay lifetimes. Inorg Chim Acta 340:44–48CrossRefGoogle Scholar
  43. 43.
    Mukherjee M, Ghosh R, Chattopadhyay K, Ghosh S (2016) Stepwise unfolding of a multi-tryptophan protein MPT63 with immunoglobulin-like fold: detection of zone-wise perturbation during guanidine hydrochloride-induced unfolding using phosphorescence spectroscopy. RSC Adv 66:61077–61087CrossRefGoogle Scholar
  44. 44.
    Cho Y, Batt CA, Sawyer L (2016) Probing the retinol-binding site of bovine betalactoglobulin. J Biol Chem 269:11102–11107Google Scholar
  45. 45.
    Harvey BJ, Bell E, Brancaleon L (2007) A tryptophan rotamer located in a polar environment probes pH-dependent conformational changes in bovine β-lactoglobulin A. J Phys Chem B. 111:2610–2620CrossRefPubMedGoogle Scholar
  46. 46.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New YorkCrossRefGoogle Scholar
  47. 47.
    Pires DE, Ascher DB (2016) CSM-lig: a web server for assessing and comparing protein–small molecule affinities. Nucleic Acids Res 8(44):557–561CrossRefGoogle Scholar
  48. 48.
    Martins PA, Gomes F, Vaz WL, Moreno MJ (2008) Binding of phospholipids to beta-Lactoglobulin and their transfer to lipid bilayers. Biochim Biophys Acta 1778:1308–1315CrossRefPubMedGoogle Scholar
  49. 49.
    Bello M (2014) Binding free energy calculations between bovine β-lactoglobulin and four fatty acids using the MMGBSA method. Biopolymers 101(10):1010–1018CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • Moumita Mukherjee
    • 1
  • Pinki Saha Sardar
    • 2
  • Pritam Roy
    • 3
  • Swagata Dasgupta
    • 3
  • Maitrayee Basu Roy
    • 4
  • Sanjib Ghosh
    • 5
  1. 1.Sri Aurobindo VidyamandirChandannagarIndia
  2. 2.The Department of ChemistryThe Bhawanipur Education Society CollegeKolkataIndia
  3. 3.Department of ChemistryIndian Institute of TechnologyKharagpurIndia
  4. 4.Department of ChemistryVidyasagar College for WomenKolkataIndia
  5. 5.Department of ChemistryAdamas UniversityBarasatIndia

Personalised recommendations