Ruthenium(II)-N-alkyl phenothiazine complexes as potential anticancer agents

Original Paper
  • 38 Downloads

Abstract

In recent years, the search for effective anticancer compounds based on transition metal complexes has been the focus of medical investigations. The synergy between the ruthenium(II) and N-alkylphenothiazine counter-ions (chlorpromazine hydrochloride, thioridazine hydrochloride and trifluoperazine dihydrochloride, respectively) through the formation of three different complexes (13) was investigated. We explored whether the selected counter-ions and complexes might affect redox homeostasis and genome integrity of normal human blood cells, and induce an inhibition of Na+/K+-ATPase and AChE at pharmacologically relevant doses. Our results have shown that counter-ions and complexes did not affect the activity of Na+/K+-ATPase, while AChE activity was inhibited in a dose-dependent manner. All investigated compounds disturbed the viability and redox homeostasis of lymphocytes. Complexes 1 and 2 displayed potent cytotoxic and prooxidant action while complex 3 behaved as a weaker genotoxic inducer. Still, the tested complexes appeared to be less genotoxic and more cytostatic than the corresponding counter-ions. The effects of selected complexes were also tested in PC12 and U2OS cancer cells with special attention being given to the ability of phenothiazines to affect dopamine D2 receptors. Using the confocal laser scanning microscopy, we observed that all the complexes reduced cell viability. Although all investigated complexes have been bound to the dopamine receptor D2-eGFP, only complex 3 reduced its surface density and increased its lateral mobility in investigated cell lines. Albeit the role of alternative targets for complex 3 cannot be ruled out, its effects should be further examined as potential treatment strategy against cancer cells that overexpress D2.

Keywords

Ruthenium (II)-N-alkyl phenothiazine complexes Cytotoxicity Oxidative stress Dopamine D2 receptor 

Notes

Acknowledgements

This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Project no. 172023. The authors would also like to acknowledge the COST action MP1302-Nanospectroscopy. The authors are thankful to Dr Vladana Vukojevic and Agneta Gunnar from the Karolinska Institutet, Department of Clinical Neuroscience, Center for Molecular Medicine, Stockholm, Sweden for providing the equipment and cell lines for the research.

References

  1. 1.
    Clarke MJ (2002) Coord Chem Rev 232:69–93CrossRefGoogle Scholar
  2. 2.
    Norden B, Lincoln P, Akerman B, Tuite E (1996) Met Ions Biol Syst 33:177–252PubMedGoogle Scholar
  3. 3.
    Florea AM, Busselberg D (2011) Cancers 3:1351–1371CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reedijk J (1996) Chem Commun 7:801–806CrossRefGoogle Scholar
  5. 5.
    de Jongh FE, van Veen RN, Veltman SJ, de Wit R, van der Burg MEL, van den Bent MJ, Planting AS, Graveland WJ, Stoter G, Verweij J (2003) Br J Cancer 88:1199–1206CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Petrovic V, Colovic M, Krstic D, Vujacic A, Petrovic S, Joksic G, Bugarcic Z, Vasic V (2013) J Inorg Biochem 124:35–41CrossRefPubMedGoogle Scholar
  7. 7.
    Petrovic V, Petrovic S, Joksic G, Savic J, Colovic M, Cinellu MA, Massai L, Messori L, Vasic V (2014) J Inorg Biochem 140:228–235CrossRefPubMedGoogle Scholar
  8. 8.
    Clarke MJ (2003) Coord Chem Rev 236:209–233CrossRefGoogle Scholar
  9. 9.
    Kostova I (2006) Curr Med Chem 13:1085–1107CrossRefPubMedGoogle Scholar
  10. 10.
    Page S (2012) Educ Chem 49:26–29Google Scholar
  11. 11.
    Bharti SK, Singh SK (2009) Int J Pharm Tech Res 1:1406–1420Google Scholar
  12. 12.
    Milacic V, Fregona D, Dou QP (2008) Histol Histopathol 23:101–108PubMedGoogle Scholar
  13. 13.
    Gupte A, Mumper RJ (2009) Cancer Treat Rev 35:32–46CrossRefPubMedGoogle Scholar
  14. 14.
    Trachootham D, Alexandre J, Huang P (2009) Nat Rev Drug Discov 8:579–591CrossRefPubMedGoogle Scholar
  15. 15.
    Jungwirth U, Kowol CR, Keppler BK, Hartinger CG, Berger W, Heffeter P (2011) Antioxid Redox Signal 15:1085–1127CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sasmal PK, Streu CN, Meggers E (2013) Chem Commun 49:1581–1587CrossRefGoogle Scholar
  17. 17.
    Ciftci O, Ozdemir I, Cakir O, Demir S (2011) Toxicol Ind Health 27:735–741CrossRefPubMedGoogle Scholar
  18. 18.
    Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ (2003) J Biol Chem 278:31426–31433CrossRefPubMedGoogle Scholar
  19. 19.
    Sahoo A, Samanta L, Das A, Patra SK, Chainy GB (1999) J Appl Toxicol 19:13–18CrossRefPubMedGoogle Scholar
  20. 20.
    Jaitovich AA, Bertorello AM (2006) Semin Nephrol 26:386–392CrossRefPubMedGoogle Scholar
  21. 21.
    Liu J, Xie ZJ (2010) Biochim Biophys Acta 1802:1237–1245CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lefranc F, Mijatovic T, Kondo Y, Sauvage S, Roland I, Debeir O, Krstic D, Vasic V, Gailly P, Kondo S, Blanco G, Kiss R (2008) Neurosurgery 62:211–222CrossRefPubMedGoogle Scholar
  23. 23.
    Newman RA, Yang P, Pawlus AD, Block KI (2008) Mol Interv 8:36–49CrossRefPubMedGoogle Scholar
  24. 24.
    Rajasekaran SA, Huynh TP, Wolle DG, Espineda CE, Inge LJ, Skay A, Lassman C, Nicholas SB, Harper JF, Reeves AE, Ahmed MM, Leatherman JM, Mullin JM, Rajasekaran AK (2010) Mol Cancer Ther 9:1515–1524CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Martinez-Lopez de Castro A, Nieto-Ceron S, Aurelio PC, Galbis-Martinez L, Latour-Perez J, Torres-Lanzas J, Tovar-Zapata I, Martinez-Hernandez P, Rodriguez-Lopez JN, Cabezas-Herrera J (2008) Clin Sci (Lond) 115:245–253CrossRefGoogle Scholar
  26. 26.
    Xi H-J, Wu R-P, Liu J-J, Zhang L-J, Li Z-S (2015) Thoracic Cancer 6:390–398CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Allardyce CS, Dorcier A, Scolaro C, Dyson PJ (2005) Appl Organomet Chem 19:1–10CrossRefGoogle Scholar
  28. 28.
    Lazarevic-Pasti T, Leskovac A, Momic T, Petrovic S, Vasic V (2017) Curr Med Chem 24:3283–3309CrossRefPubMedGoogle Scholar
  29. 29.
    Debbeti V, Ahmad TJ, Ananda S, Made Gowda NM (2012) Am J Chem 2:294–298CrossRefGoogle Scholar
  30. 30.
    Gowda NMM, Vallabhaneni RK, Gajula I, Ananda S (1997) J Mol Struct 407:125–130CrossRefGoogle Scholar
  31. 31.
    Keshavan B, Chandrashekara PG, Made Gowda NM (2000) J Mol Struct 553:193–197CrossRefGoogle Scholar
  32. 32.
    Keshavan B, Gowda K (2001) J Indian Chem Soc 78:37–38Google Scholar
  33. 33.
    Krstic M, Sovilj SP, Grguric-Sipka S, Radosavljevic Evans I, Borozan S, Santibanez JF, Kocic J (2010) Eur J Med Chem 45:3669–3676CrossRefPubMedGoogle Scholar
  34. 34.
    Yakubreddy N, Tarab J, Ahmad GKK, Ananda S, Made Gowda NM (2012) Am J Chem 2:181–185CrossRefGoogle Scholar
  35. 35.
    Jaszczyszyn A, Gasiorowski K, Swiatek P, Malinka W, Cieslik-Boczula K, Petrus J, Czarnik-Matusewicz B (2012) Pharm Rep 64:16–23CrossRefGoogle Scholar
  36. 36.
    Pluta K, Jelen M, Morak-Mlodawska B, Zimecki M, Artym J, Kocieba M (2010) Pharm Rep 62:319–332CrossRefGoogle Scholar
  37. 37.
    Ford JM, Prozialeck WC, Hait WN (1989) Mol Pharmacol 35:105–115PubMedGoogle Scholar
  38. 38.
    Achour A (2002) Int J Antimicrob Agents 20:305–306CrossRefPubMedGoogle Scholar
  39. 39.
    Zhelev Z, Ohba H, Bakalova R, Hadjimitova V, Ishikawa M, Shinohara Y, Baba Y (2004) Cancer Chemother Pharmacol 53:267–275CrossRefPubMedGoogle Scholar
  40. 40.
    Grief F, Soroff HS, Albers KM, Taichman LB (1989) Eur J Cancer Clin Oncol 25:19–26CrossRefPubMedGoogle Scholar
  41. 41.
    Komoda T, Ikeda E, Nakatani Y, Sakagishi Y, Maeda N, Kato T, Kumegawa M (1985) Biochem Pharmacol 34:3885–3889CrossRefPubMedGoogle Scholar
  42. 42.
    Lopez-Girona A, Colomer J, Pujol MJ, Bachs O, Agell N (1992) Biochem Biophys Res Commun 184:1517–1523CrossRefPubMedGoogle Scholar
  43. 43.
    Nordenberg J, Fenig E, Landau M, Weizman R, Weizman A (1999) Biochem Pharmacol 58:1229–1236CrossRefPubMedGoogle Scholar
  44. 44.
    Sachlos E, Risueno RM, Laronde S, Shapovalova Z, Lee JH, Russell J, Malig M, McNicol JD, Fiebig-Comyn A, Graham M, Levadoux-Martin M, Lee JB, Giacomelli AO, Hassell JA, Fischer-Russell D, Trus MR, Foley R, Leber B, Xenocostas A, Brown ED, Collins TJ, Bhatia M (2012) Cell 149:1284–1297CrossRefPubMedGoogle Scholar
  45. 45.
    Polischouk AG, Holgersson A, Zong D, Stenerlow B, Karlsson HL, Moller L, Viktorsson K, Lewensohn R (2007) Mol Cancer Ther 6:2303–2309CrossRefPubMedGoogle Scholar
  46. 46.
    Lee MS, Johansen L, Zhang Y, Wilson A, Keegan M, Avery W, Elliott P, Borisy AA, Keith CT (2007) Cancer Res 67:11359–11367CrossRefPubMedGoogle Scholar
  47. 47.
    Tanaka M, Molnar J, Kidd S (1997) Anticancer Res 17:381–385PubMedGoogle Scholar
  48. 48.
    Mu J, Huang W, Tan Z, Li M, Zhang L, Ding Q, Wu X, Lu J, Liu Y, Dong Q, Xu H (2017) Oncol Lett 13:1223–1227CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sokoloff P, Riou JF, Martres MP, Schwartz JC (1989) Biochem Biophys Res Commun 162:575–582CrossRefPubMedGoogle Scholar
  50. 50.
    Grossrubatscher E, Veronese S, Ciaramella PD, Pugliese R, Boniardi M, De Carlis L, Torre M, Ravini M, Gambacorta M, Loli P (2008) Cancer Biol Ther 7:1970–1978CrossRefPubMedGoogle Scholar
  51. 51.
    Jandaghi P, Najafabadi HS, Bauer AS, Papadakis AI, Fassan M, Hall A, Monast A, von Knebel Doeberitz M, Neoptolemos JP, Costello E, Greenhalf W, Scarpa A, Sipos B, Auld D, Lathrop M, Park M, Büchler MW, Strobel O, Hackert T, Giese NA, Zogopoulos G, Sangwan V, Huang S, Riazalhosseini Y, Hoheisel JD (2016) Gastroenterology 151:1218–1231CrossRefPubMedGoogle Scholar
  52. 52.
    Li J, Zhu S, Kozono D, Ng K, Futalan D, Shen Y, Akers JC, Steed T, Kushwaha D, Schlabach M, Carter BS, Kwon C-H, Furnari F, Cavenee W, Elledge S, Chen CC (2014) Oncotarget 5:882–893PubMedPubMedCentralGoogle Scholar
  53. 53.
    Roy S, Lu K, Nayak MK, Bhuniya A, Ghosh T, Kundu S, Ghosh S, Baral R, Dasgupta PS, Basu S (2017) J Biol Chem 292:435–445CrossRefPubMedGoogle Scholar
  54. 54.
    Vukojević V, Ming Y, D’Addario C, Hansen M, Langel Ü, Schulz R, Johansson B, Rigler R, Terenius L (2008) FASEB J 22:3537–3548CrossRefPubMedGoogle Scholar
  55. 55.
    Law on health care (2005) Official Gazette of the Republic of Serbia. Parliament of the Republic of Serbia 107:112–161Google Scholar
  56. 56.
    Vasic V, Jovanovic D, Krstic D, Nikezic G, Horvat A, Vujisic L, Nedeljkovic N (1999) Toxicol Lett 110:95–103CrossRefPubMedGoogle Scholar
  57. 57.
    Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) Biochem Pharmacol 7:88–95CrossRefPubMedGoogle Scholar
  58. 58.
    Aebi H (1974) In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 673–678CrossRefGoogle Scholar
  59. 59.
    Aruoma OI, Halliwell B, Laughton MJ, Quinlan GJ, Gutteridge JM (1989) Biochem J 258:617–620CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275PubMedGoogle Scholar
  61. 61.
    Fenech M (1993) Mutat Res 285:35–44CrossRefPubMedGoogle Scholar
  62. 62.
    Surralles J, Xamena N, Creus A, Catalan J, Norppa H, Marcos R (1995) Mutat Res 341:169–184CrossRefPubMedGoogle Scholar
  63. 63.
    García C, Oyola R, Piñeroo LE, Arce R, Silva J, Sánchez V (2005) J Phys Chem A 109:3360–3371CrossRefPubMedGoogle Scholar
  64. 64.
    Ayala A, Munoz MF, Arguelles S (2014) Oxid Med Cell Longev 2014:360438CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Fenech M (2007) Nat Protoc 2:1084–1104CrossRefPubMedGoogle Scholar
  66. 66.
    Santos RLSR, Bergamo A, Sava G, de Oliveira Silva D (2012) Polyhedron 42:175–181CrossRefGoogle Scholar
  67. 67.
    Ball DJ, Luo Y, Kessel D, Griffiths J, Brown SB, Vernon DI (1998) J Photochem Photobiol B 42:159–163CrossRefPubMedGoogle Scholar
  68. 68.
    Glass-Marmor L, Morgenstern H, Beitner R (1996) Eur J Pharmacol 313:265–271CrossRefPubMedGoogle Scholar
  69. 69.
    Hait WN, Grais L, Benz C, Cadman EC (1985) Cancer Chemother Pharmacol 14:202–205CrossRefPubMedGoogle Scholar
  70. 70.
    Karmakar P, Natarajan AT, Poddar RK, Dasgupta UB (2001) Toxicol Lett 125:19–28CrossRefPubMedGoogle Scholar
  71. 71.
    Motohashi N (1991) Anticancer Res 11:1125–1164PubMedGoogle Scholar
  72. 72.
    Motohashi N, Kawase M, Saito S, Sakagami H (2000) Curr Drug Targets 1:237–245CrossRefPubMedGoogle Scholar
  73. 73.
    Motohashi N, Sakagami H, Kamata K, Yamamoto Y (1991) Anticancer Res 11:1933–1937PubMedGoogle Scholar
  74. 74.
    Schleuning M, Brumme V, Wilmanns W (1993) Anticancer Res 13:599–602PubMedGoogle Scholar
  75. 75.
    Sullivan GF, Garcia-Welch A, White E, Lutzker S, Hait WN (2002) J Exp Ther Oncol 2:19–26CrossRefPubMedGoogle Scholar
  76. 76.
    Tremblay JF, Dussault S, Viau G, Gad F, Boushira M, Bissonnette R (2002) Photochem Photobiol Sci 1:852–856CrossRefPubMedGoogle Scholar
  77. 77.
    Motohashi N, Kurihara T, Satoh K, Sakagami H, Mucsi I, Pusztai R, Szabo M, Molnar J (1999) Anticancer Res 19:1837–1842PubMedGoogle Scholar
  78. 78.
    Hait WN, Aftab DT (1992) Biochem Pharmacol 43:103–107CrossRefPubMedGoogle Scholar
  79. 79.
    Aloni B, Livne A (1974) Biochim Biophys Acta (BBA) Biomembr 339:359–366CrossRefGoogle Scholar
  80. 80.
    Zovko A, Sepcic K, Turk T, Faimali M, Garaventa F, Chelossi E, Paleari L, Falugi C, Aluigi M, Angelini C (2009) Wseas Transact biol biomed 6:58–69Google Scholar
  81. 81.
    Ki YS, Park EY, Lee HW, Oh MS, Cho YW, Kwon YK, Moon JH, Lee KT (2010) Biol Pharm Bull 33:1054–1059CrossRefPubMedGoogle Scholar
  82. 82.
    Fuhrman B, Partoush A, Aviram M (2004) Biochem Biophys Res Commun 322:974–978CrossRefPubMedGoogle Scholar
  83. 83.
    Hug H, Strand S, Grambihler A, Galle J, Hack V, Stremmel W, Krammer PH, Galle PR (1997) J Biol Chem 272:28191–28193CrossRefPubMedGoogle Scholar
  84. 84.
    Manda G, Nechifor MT, Neagu T-M (2009) Curr Chem Biol 3:22–46CrossRefGoogle Scholar
  85. 85.
    Arends IWCE, Kodama T, Sheldon RA (2004) In: Bruneau C, Dixneuf PH (eds) Ruthenium catalysts and fine chemistry. Topics in organometallic chemistry. Springer, Berlin, Heidelberg, pp 277–320CrossRefGoogle Scholar
  86. 86.
    Pall HS, Williams AC, Blake DR, Lunec J (1987) Lancet 2:596–599CrossRefPubMedGoogle Scholar
  87. 87.
    Solary E, Droin N, Bettaieb A, Corcos L, Dimanche-Boitrel MT, Garrido C (2000) Leukemia 14:1833–1849CrossRefPubMedGoogle Scholar
  88. 88.
    Gebel T, Lantzsch H, Plessow K, Dunkelberg H (1997) Mutat Res 389:183–190CrossRefPubMedGoogle Scholar
  89. 89.
    Hartwig A (1995) Biometals 8:3–11CrossRefPubMedGoogle Scholar
  90. 90.
    Migliore L, Frenzilli G, Nesti C, Fortaner S, Sabbioni E (2002) Mutagenesis 17:411–417CrossRefPubMedGoogle Scholar
  91. 91.
    de Faria PA, Bettanin F, Cunha RL, Paredes-Gamero EJ, Homem-de-Mello P, Nantes IL, Rodrigues T (2015) Toxicology 330:44–54CrossRefPubMedGoogle Scholar
  92. 92.
    Hendrich AB, Michalak K, Wesołowska O (2007) Biophys Chem 130:32–40CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  1. 1.Vinca Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Veterinary MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations