Advertisement

Arsenic trioxide: insights into its evolution to an anticancer agent

  • Maneka Hoonjan
  • Vaibhav Jadhav
  • Purvi BhattEmail author
Minireview

Abstract

Arsenic and its various forms have been in use in ancient Chinese medicine for more than 2000 years. Arsenicals have gained importance for having remedial effects for various diseases from syphilis to cancer thus highlighting its role as a therapeutic agent even though it has been labelled as a potential ‘poison’. The ability of arsenic, specifically arsenic trioxide, to treat acute promyelocytic leukaemia has radically changed the perception of this poison and has been the main factor for the re-emergence of this candidate to Western medicine for the treatment of leukaemia and other solid tumours. This review highlights the glorious history of arsenic and its various forms with major emphasis on arsenic trioxide as a therapeutic agent. The mechanism of action, pathogenesis, pharmacokinetic profile, safety concerns, ongoing clinical trials and various new forms of arsenic trioxide are discussed. The review also outlines the therapeutic ability of this drug, discusses the latest developments and recent investigations and potential advancement of arsenic trioxide as nanoformulations that has made it emerge as a potential remedial agent.

Keywords

Arsenic trioxide Acute promyelocytic leukaemia Cancer Solid tumour Nanotechnology In silico Anticancer drug 

Notes

Acknowledgements

Ms. Maneka Hoonjan is a recipient of the Senior Research Fellowship from the University Grants Commission-Maulana Azad National Fellowship for Minority (UGC-MANF), India, under the sanction number: MANF-2014-15-SIK-MAH-37834. The authors would like to thank Mr. Mitesh Joshi, NMIMS Sunandan Divatia School of Science for providing help with figure artwork.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chen CJ, Wang CJ (1990) Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res 50:5470–5474PubMedGoogle Scholar
  2. 2.
    Waxman S, Anderson K (2001) History of the development of arsenic derivatives in cancer therapy. Oncologist 6:3–10PubMedCrossRefGoogle Scholar
  3. 3.
    Gawkrodger DJ (2004) Occupational skin cancers. Occup Med 54(7):458–463CrossRefGoogle Scholar
  4. 4.
    Miller WH, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893–3903PubMedGoogle Scholar
  5. 5.
    Han BC, Jeng WL, Jeng MS, Kao LT, Meng PJ, Huang YL (1997) Rock-shells (Thais clavigera) as an indicator of As, Cu, and Zn contamination on the Putai coast of the black-foot disease area in Taiwan. Arch Environ Contam Toxicol 32:456–461PubMedCrossRefGoogle Scholar
  6. 6.
    Hernandez-Zavala A, Cordova E, Del Razo LM, Cebrian ME, Garrido E (2005) Effects of arsenite on cell cycle progression in a human bladder cancer cell line. Toxicology 207:49–57PubMedCrossRefGoogle Scholar
  7. 7.
    Garrison FH (1921) An introduction to the history of medicine c, 2nd edn. WB Saunders Company, PhiladelphiaGoogle Scholar
  8. 8.
    Frith J (2013) Arsenic—the “Poison of Kings” and the “Saviour of Syphilis”. J Milit Vet Health 21:11–17Google Scholar
  9. 9.
    Zhu Q, Deng Z, Zhu S, Zhao P, Wang M, Hu X (2017) Study on the clinical safe and effective methods of arsenic-containing compound-Qinghuang powder in the treatment of myelodysplastic syndrome. Evid Based Complement Alternat Med 2017:1–6 (Article ID 2095682) Google Scholar
  10. 10.
    Ding W, Zhang L, Kim S, Tian W, Tong Y, Liu J, Ma Y, Chen S (2015) Arsenic sulfide as a potential anti-cancer drug. Mol Med Rep 11:968–974PubMedCrossRefGoogle Scholar
  11. 11.
    Chen B, Liu Q, Popowich A, Shen S, Yan X, Zhang Q, Li XF, Weinfeld M, Cullen WR, Le XC (2015) Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 7:39–55PubMedCrossRefGoogle Scholar
  12. 12.
    Hsu E (2001) Innovation in Chinese medicine. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Treleaven J, Meller S, Farmer P, Birchall D, Goldman J, Piller G (1993) Arsenic and ayurveda. Leukemia Lymphoma 10:343–345PubMedCrossRefGoogle Scholar
  14. 14.
    Panda AK, Hazra J (2012) Arsenical compounds in ayurveda medicine: a prospective analysis. Int J Res Ayurveda Pharm 3:772–776CrossRefGoogle Scholar
  15. 15.
    Haller JS (1975) Therapeutic mule: the use of arsenic in the nineteenth century material medica. Pharm Hist 17:87–100PubMedGoogle Scholar
  16. 16.
    Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Forkner CE, Scott TFM (1931) Arsenic as a therapeutic agent in CML. JAMA 97:3–5CrossRefGoogle Scholar
  18. 18.
    Doyle D (2009) Notoriety to respectability: a short history of arsenic prior to its present day use in haematology. Br J Haematol 145:309–317PubMedCrossRefGoogle Scholar
  19. 19.
    Hu J, Fang J, Dong Y, Chen SJ, Chen Z (2005) Arsenic in cancer therapy. Anticancer Drugs 16:119–127PubMedCrossRefGoogle Scholar
  20. 20.
    Gharde SR, Suryawanshi SS (2014) Physico-chemical study of arsenic trioxide (somal) before and after detoxification (shodhan). World J Pharm Pharm Sci 3:1711–1716Google Scholar
  21. 21.
    Kwong YL, Todd D (1997) Delicious poison: arsenic trioxide for the treatment of leukemia. Blood 89(9):3487–3488PubMedGoogle Scholar
  22. 22.
    Au WY, Kumana CR, Kou M, Mak R, Chan GC, Lam CW et al (2003) Oral arsenic trioxide in the treatment of relapsed acute promyelocytic leukemia. Blood 102:407–408PubMedCrossRefGoogle Scholar
  23. 23.
    Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY et al (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354–3360PubMedGoogle Scholar
  24. 24.
    Kumana C, Au W, Lee N, Kou M, Mak R, Lam C et al (2002) Systemic availability of arsenic from oral arsenic-trioxide used to treat patients with hematological malignancies. Eur J Clin Pharmacol 58:521–526PubMedCrossRefGoogle Scholar
  25. 25.
    Kwong YL (2004) Arsenic trioxide in the treatment of haematological malignancies. Expert Opin Drug Saf 3:589–597PubMedCrossRefGoogle Scholar
  26. 26.
    Huang C, Ke Q, Costa M, Shi X (2004) Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem 255:57–66PubMedCrossRefGoogle Scholar
  27. 27.
    Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78PubMedCrossRefGoogle Scholar
  28. 28.
    Corsini E, Asti L, Viviani B, Marinovich M, Galli CL (1999) Sodium arsenate induces overproduction of interleukin-1α in murine keratinocytes: role of mitochondria. J Invest Dermatol 113:760–765PubMedCrossRefGoogle Scholar
  29. 29.
    Kondoh K, Torii S, Nishida E (2005) Control of MAP kinase signaling to the nucleus. Chromosoma 114:86–91PubMedCrossRefGoogle Scholar
  30. 30.
    Rossman TG (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res Mol Mech Mutagen 533:37–65CrossRefGoogle Scholar
  31. 31.
    Huang C, Ma WY, Li J, Goranson A, Dong Z (1999) Requirement of Erk, but not JNK, for arsenite-induced cell transformation. J Biol Chem 274:14595–14601PubMedCrossRefGoogle Scholar
  32. 32.
    Yih LH, Lee TC (2003) Induction of C-anaphase and diplochromosome through dysregulation of spindle assembly checkpoint by sodium arsenite in human fibroblasts. Cancer Res 63:6680–6688PubMedGoogle Scholar
  33. 33.
    Lai YL, Chang HH, Huang MJ, Chang KH, Su WH, Chen HW et al (2003) Combined effect of topical arsenic trioxide and radiation therapy on skin-infiltrating lesions of breast cancer—a pilot study. Anticancer Drugs 14:825–828PubMedCrossRefGoogle Scholar
  34. 34.
    Emadi A, Gore SD (2010) Arsenic trioxide—an old drug rediscovered. Blood Rev 24:191–199PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chen W, Martindale JL, Holbrook NJ, Liu Y (1998) Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol Cell Biol 18:5178–5188PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gupta S, Yel L, Kim D, Kim C, Chiplunkar S, Gollapudi S (2003) Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2. Mol CancerTher 2:711–719Google Scholar
  37. 37.
    Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY et al (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML–RAR alpha/PML proteins. Blood 88:1052–1061PubMedGoogle Scholar
  38. 38.
    Zhu J, Lallemand-Breitenbach V, de Thé H (2001) Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene 20:7257–7265PubMedCrossRefGoogle Scholar
  39. 39.
    Zhu J, Koken MH, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY et al (1997) Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci 94:3978–3983PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cheng HY, Li P, David M, Smithgall TE, Feng L, Lieberman MW (2004) Arsenic inhibition of the JAK–STAT pathway. Oncogene 23:3603–3612PubMedCrossRefGoogle Scholar
  41. 41.
    Seol JG, Park WH, Kim ES, Jung CW, Hyun JM, Kim BK et al (1999) Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. Biochem Biophys Res Commun 265:400–404PubMedCrossRefGoogle Scholar
  42. 42.
    Lew YS, Brown SL, Griffin RJ, Song CW, Kim JH (1999) Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Res 59:6033–6037PubMedGoogle Scholar
  43. 43.
    Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ et al (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348PubMedCrossRefGoogle Scholar
  44. 44.
    Chiu HW, Chen YA, Ho SY, Wang YJ (2012) Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and-independent human prostate cancer cells. PLoS One 7:e31579PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    AkaoY Nakagawa Y, Akiyama K (1999) Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro. FEBS Lett 455:59–62CrossRefGoogle Scholar
  46. 46.
    Maeda H, Hori S, Nishitoh H, Ichijo H, Ogawa O, Kakehi Y et al (2001) Tumor growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer. Cancer Res 61:5432–5440PubMedGoogle Scholar
  47. 47.
    Chow SK, Chan JY, Fung KP (2004) Inhibition of cell proliferation and the action mechanisms of arsenic trioxide (As2O3) on human breast cancer cells. J Cell Biochem 93:173–187PubMedCrossRefGoogle Scholar
  48. 48.
    Degos L (2003) The history of acute promyelocytic leukaemia. Br J Haematol 122:539–553PubMedCrossRefGoogle Scholar
  49. 49.
    Hillestad LK (1957) Acute promyelocytc leukemia. Acta Med Scand 159:189–194PubMedCrossRefGoogle Scholar
  50. 50.
    Rowley JD, Golomb HM, Dougherty C (1997) The 15–17 translocation: a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1:549–550Google Scholar
  51. 51.
    Lo-Coco F, Cicconi L (2011) History of acute promyelocytic leukemia: a tale of endless revolution. Mediterr J Hematol Infect Dis 3:2011067CrossRefGoogle Scholar
  52. 52.
    Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P et al (1990) All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 76:1704–1709PubMedGoogle Scholar
  53. 53.
    Warrell RP Jr, Frankel SR, Miller WH Jr, Scheinberg DA, Itri LM, Hittelman WN et al (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 324:1385–1393PubMedCrossRefGoogle Scholar
  54. 54.
    de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML–RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675–684PubMedCrossRefGoogle Scholar
  55. 55.
    Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VVVS et al (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66:663–674PubMedCrossRefGoogle Scholar
  56. 56.
    Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP et al (1993) High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc Natl Acad Sci 90:7225–7229PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N et al (1994) The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 13:1073–1083PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111:2505–2515PubMedCrossRefGoogle Scholar
  59. 59.
    Sanz MA, Lo-Coco F (2011) Modern approaches to treating acute promyelocytic leukemia. J Clin Oncol 29:495–503PubMedCrossRefGoogle Scholar
  60. 60.
    Antman KH (2001) Introduction: the history of arsenic trioxide in cancer therapy. Oncologist 6:1–2PubMedCrossRefGoogle Scholar
  61. 61.
    Munshi NC (2001) Arsenic trioxide: an emerging therapy for multiple myeloma. Oncologist 6:17–21PubMedCrossRefGoogle Scholar
  62. 62.
    Dilda PJ, Hogg PJ (2007) Arsenical-based cancer drugs. Cancer Treat Rev 33:542–564PubMedCrossRefGoogle Scholar
  63. 63.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2014) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386PubMedCrossRefGoogle Scholar
  64. 64.
    Walker AM, Stevens JJ, Ndebele K, Tchounwou PB (2016) Evaluation of arsenic trioxide potential for lung cancer treatment: assessment of apoptotic mechanisms and oxidative damage. J Cancer Sci Ther 8:1PubMedCrossRefGoogle Scholar
  65. 65.
    Ge-ping Q, Qing-Yu X, Bing L, Yong-an L, Ling-Zhen Z (2009) Arsenic trioxide inhibits the growth of human lung cancer cell lines via cell cycle arrest and induction of apoptosis at both normoxia and hypoxia. Toxicol Ind Health 25:505–515CrossRefGoogle Scholar
  66. 66.
    Zheng CY, Lam SK, Li YY, Fong BMW, Mak JCW, Ho JCM (2013) Combination of arsenic trioxide and chemotherapy in small cell lung cancer. Lung Cancer 82:222–230PubMedCrossRefGoogle Scholar
  67. 67.
    Speiser J, Foreman K, Drinka E, Godellas C, Perez C, Salhadar A et al (2012) Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer. Int J Surg Pathol 20:137–143CrossRefGoogle Scholar
  68. 68.
    Yao K, Rizzo P, Rajan P, Albain K, Rychlik K, Shah S (2011) Notch-1 and notch-4 receptors as prognostic markers in breast cancer. Int J Surg Pathol 19:607–613PubMedCrossRefGoogle Scholar
  69. 69.
    Xia J, Li Y, Yang Q, Mei C, Chen Z, Bao B et al (2012) Arsenic trioxide inhibits cell growth and induces apoptosis through inactivation of notch signaling pathway in breast cancer. Int J Mol Sci 13:9627–9641PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wang Y, Zhang Y, Yang L, Cai B, Li J, Zhou Y et al (2011) Arsenic trioxide induces the apoptosis of human breast cancer MCF-7 cells through activation of caspase-3 and inhibition of HERG channels. Exp Ther Med 2:481–486PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sun RC, Board PG, Blackburn AC (2011) Targeting metabolism with arsenic trioxide and dichloroacetate in breast cancer cells. Mol Cancer 10:1CrossRefGoogle Scholar
  72. 72.
    Baj G, Arnulfo A, Deaglio S, Mallone R, Vigone A, De Cesaris MG et al (2002) Arsenic trioxide and breast cancer: analysis of the apoptotic, differentiative and immunomodulatory effects. Breast Cancer Res Treat 73:61–73PubMedCrossRefGoogle Scholar
  73. 73.
    Uslu R, Sanli UA, Sezgin C, Karabulut B, Terzioglu E, Omay SB et al (2000) Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines. Clin Cancer Res 6:4957–4964PubMedGoogle Scholar
  74. 74.
    Zheng Y, Zhou M, Ye A, Li Q, Bai Y, Zhang Q (2010) The conformation change of Bcl-2 is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in SGC7901 human gastric cancer cells. World J Surg Oncol 8(1):1CrossRefGoogle Scholar
  75. 75.
    Xiao YF, Liu SX, Wu DD, Chen X, Ren LF (2006) Inhibitory effect of arsenic trioxide on angiogenesis and expression of vascular endothelial growth factor in gastric cancer. World J Gastroenterol 12:5780PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wen X, Li D, Zhang Y, Liu S, Ghali L, Iles RK (2012) Arsenic trioxide induces cervical cancer apoptosis, but specifically targets human papillomavirus-infected cell populations. Anticancer Drugs 23:280–287PubMedCrossRefGoogle Scholar
  77. 77.
    Yu J, Qian H, Li Y, Wang Y, Zhang X, Liang X et al (2007) Therapeutic effect of arsenic trioxide (As2O3) on cervical cancer in vitro and in vivo through apoptosis induction. Cancer Biol Ther 6:580–586PubMedCrossRefGoogle Scholar
  78. 78.
    Yu J, Qian H, Li Y, Wang Y, Zhang X, Liang X et al (2007) Arsenic trioxide (As2O3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecol Oncol 106:400–406PubMedCrossRefGoogle Scholar
  79. 79.
    Tong Q, Zeng F, Zheng L, Zhao J, Lu G (2001) Apoptosis inducing effects of arsenic trioxide on human bladder cancer cell line BIU-87. Chin Med J114:402–406Google Scholar
  80. 80.
    Cao Y, Yu SL, Wang Y, Guo GY, Ding Q, An RH (2011) MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumor Biol 32:179–188CrossRefGoogle Scholar
  81. 81.
    Li X, Ding X, Adrian TE (2003) Arsenic trioxide induces apoptosis in pancreatic cancer cells via changes in cell cycle, caspase activation, and GADD expression. Pancreas 27:174–179PubMedCrossRefGoogle Scholar
  82. 82.
    Wang W, Adachi M, Zhang R, Zhou J, Zhu D (2009) A novel combination therapy with arsenic trioxide and parthenolide against pancreatic cancer cells. Pancreas 38:e114–e123PubMedCrossRefGoogle Scholar
  83. 83.
    Du CW, Wen BG, Li DR, Peng X, Hong CQ, Chen JY et al (2006) Arsenic trioxide reduces the invasive and metastatic properties of nasopharyngeal carcinoma cells in vitro. Braz J Med Biol Res 39:677–685PubMedCrossRefGoogle Scholar
  84. 84.
    Zheng Y, Caiwen DU, Derui LI, Yingcheng LIN, Mingyao WU (2004) Arsenic trioxide induced differentiation and apoptosis in human nasopharyngeal carcinoma xenografts in BALB/C nude mice. Chin German J Clin Oncol 3:151–155CrossRefGoogle Scholar
  85. 85.
    Li DR, Lin YC, Xie LX, Du CW, Wu MY (2003) Arsenic trioxide enhances radiosensitivity in vitro of nasopharyngeal carcinoma. Exp Oncol 25:248–251Google Scholar
  86. 86.
    Helm CW, States CJ (2009) Enhancing the efficacy of cisplatin in ovarian cancer treatment—could arsenic have a role. J Ovarian Res 2:1CrossRefGoogle Scholar
  87. 87.
    Kong B, Huang S, Wang W, Ma D, Qu X, Jiang J et al (2005) Arsenic trioxide induces apoptosis in cisplatin-sensitive and -resistant ovarian cancer cell lines. Int J Gynecol Cancer 15:872–877PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang N, Wu ZM, McGowan E, Shi J, Hong ZB, Ding CW et al (2009) Arsenic trioxide and cisplatin synergism increase cytotoxicity in human ovarian cancer cells: therapeutic potential for ovarian cancer. Cancer Sci 100:2459–2464PubMedCrossRefGoogle Scholar
  89. 89.
    Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A (2004) The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicol Appl Pharmacol 198:458–467PubMedCrossRefGoogle Scholar
  90. 90.
    Sattar A, Xie S, Hafeez MA, Wang X, Hussain HI, Iqbal Z et al (2016) Metabolism and toxicity of arsenicals in mammals. Environ Toxicol Pharmacol 48:214–224PubMedCrossRefGoogle Scholar
  91. 91.
    Naranmandura H, Suzuki N, Suzuki KT (2006) Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol 19:1010–1018PubMedCrossRefGoogle Scholar
  92. 92.
    Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8:23905–23926PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Wang Z, Zhou J, Lu X, Gong Z, Le XC (2004) Arsenic speciation in urine from acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. Chem Res Toxicol 17:95–103PubMedCrossRefGoogle Scholar
  94. 94.
    Chendamarai E, Ganesan S, Alex AA, Kamath V, Nair SC, Nellickal AJ et al (2015) Comparison of newly diagnosed and relapsed patients with acute promyelocytic leukemia treated with arsenic trioxide: insight into mechanisms of resistance. PLoS One 10:e0121912PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Mathews V, George B, Lakshmi KM, Viswabandya A, Bajel A, Balasubramanian P et al (2006) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 107:2627–2632PubMedCrossRefGoogle Scholar
  96. 96.
    Murgo AJ (2001) Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist 6:22–28PubMedCrossRefGoogle Scholar
  97. 97.
    Owonikoko TK, Zhang G, Kim HS, Stinson RM, Bechara R, Zhang C et al (2016) Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J Trans Med 14:111 [Clinical study no: NCT01470248 (Study of Arsenic Trioxide in Small Cell Lung Cancer)] CrossRefGoogle Scholar
  98. 98.
    Qazilbash MH, Saliba RM, Nieto Y, Parikh G, Pelosini M, Khan FB et al (2008) Arsenic trioxide with ascorbic acid and high-dose melphalan: results of a phase II randomized trial. Biol Blood Marrow Transplant 14:1401–1407 [Clinical study no: NCT00661544 (Arsenic Trioxide with Ascorbic Acid and Melphalan for Myeloma)] PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ehrlich P (1906) Collected studies on immunity. Wiley, OxfordGoogle Scholar
  100. 100.
    Pfizenmaier K, Nagel GA (1985) Monoclonal antibodies in cancer therapy. Dtsch Med Wochenschr 110:615–617PubMedCrossRefGoogle Scholar
  101. 101.
    Nadler LM, Stashenko P, Hardy R, Kaplan WD, Button LN, Kufe DW et al (1980) Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res 40:3147–3154PubMedGoogle Scholar
  102. 102.
    Rosenberg SA, Terry WD (1977) Passive immunotherapy of cancer in animals and man. Adv Cancer Res 25:323–388PubMedCrossRefGoogle Scholar
  103. 103.
    Dillman RO, Beauregard JC, Halpern SE, Clutter M (1986) Toxicities and side effects associated with intravenous infusions of murine monoclonal antibodies. J Immunother 5:73–84Google Scholar
  104. 104.
    Senter PD, Springer CJ (2001) Selective activation of anticancer prodrugs by monoclonal antibody–enzyme conjugates. Adv Drug Deliv Rev 53:247–264PubMedCrossRefGoogle Scholar
  105. 105.
    Reubi JC, Schaer JC, Markwalder R, Waser B, Horisberger U, Laissue J (1997) Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biol Med 70:471–479PubMedPubMedCentralGoogle Scholar
  106. 106.
    Boerman OC, Oyen WJ, Corstens FH (2000) Radio-labeled receptor-binding peptides: a new class of radiopharmaceuticals. Semin Nucl Med 30:195–208PubMedCrossRefGoogle Scholar
  107. 107.
    Katsuno T, Pradhan TK, Ryan RR, Mantey SA, Hou W, Donohue PJ et al (1999) Pharmacology and cell biology of the bombesin receptor subtype 4 (BB4-R). Biochemistry 38:7307–7320PubMedCrossRefGoogle Scholar
  108. 108.
    Jensen RT, Moody T, Pert C, Rivier JE, Gardner JD (1978) Interaction of bombesin and litorin with specific membrane receptors on pancreatic acinar cells. ‎Proc Natl Acad Sci 75:6139–6143PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nanda PK, Lane SR, Retzloff LB, Pandey US, Smith CJ (2010) Radiolabeled regulatory peptides for imaging and therapy. Curr Opin Endocrinol Diabetes Obes 17:69PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594PubMedCrossRefGoogle Scholar
  111. 111.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefGoogle Scholar
  112. 112.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Åkerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M (2010) Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:205–218PubMedCrossRefGoogle Scholar
  115. 115.
    Plank C, Schillinger U, Scherer F, Bergemann C, Rémy JS, Krötz F et al (2003) The magnetofection method: using magnetic force to enhance gene delivery. ‎Biol. Chem 384:737–747Google Scholar
  116. 116.
    Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. ‎Adv Drug Deliv Rev 60:1252–1265PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kaasgaard T, Andresen TL (2010) Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv 7:225–243PubMedCrossRefGoogle Scholar
  118. 118.
    Cho K, Wang XU, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316PubMedCrossRefGoogle Scholar
  119. 119.
    Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288PubMedCrossRefGoogle Scholar
  120. 120.
    Mahmoud W, Sukhanova A, Oleinikov V, Rakovich YP, Donegan JF, Pluot M et al (2010) Emerging applications of fluorescent nanocrystals quantum dots for micrometastases detection. Proteomics 10:700–716PubMedCrossRefGoogle Scholar
  121. 121.
    Batist G, Barton J, Chaikin P, Swenson C, Welles L (2002) Myocet (liposome-encapsulated doxorubicin citrate): a new approach in breast cancer therapy. Expert Opin Pharmacother 3:1739–1751PubMedCrossRefGoogle Scholar
  122. 122.
    Cherukuri P, Curley SA (2010) Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Cancer nanotechnology: methods and protocols. Springer, Berlin, pp 359–373Google Scholar
  123. 123.
    Samia AC, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737PubMedCrossRefGoogle Scholar
  124. 124.
    Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360–1361PubMedCrossRefGoogle Scholar
  125. 125.
    Vyshnava SS, Kanderi DK, Panjala SP, Pandian K, Bontha RR, Goukanapalle PKR, Banaganapalli B (2016) Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an in silico approach. Biotechnol Appl Biochem 180:426–437CrossRefGoogle Scholar
  126. 126.
    Kang SG, Zhou G, Yang P, Liu Y, Sun B, Huynh T et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@ C82 (OH) 22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci 109:15431–15436PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Yin JJ, Sharma S, Shumyak SP, Wang ZX, Zhou ZW, Zhang Y et al (2013) Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment. PLoS One 8:e62289PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Al-Khodairy FM, Khan MKA, Kunhi M, Pulicat MS, Akhtar S, Arif JM (2013) In Silico prediction of mechanism of Erysolin-induced apoptosis in human breast cancer cell lines. Am J Bioinf Res 3:62–71Google Scholar
  129. 129.
    Silviya AE, Kavitha G, Kutty KN, PK KN (2015) Insilico modeling of chitosan as a drug delivery system. Int J Drug Deliv 7:27–31Google Scholar
  130. 130.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20PubMedCrossRefGoogle Scholar
  131. 131.
    Jadhav V, Sachar S, Chandra S, Bahadur D, Bhatt P (2016) Synthesis and characterization of arsenic trioxide nanoparticles and their In vitro cytotoxicity studies on mouse fibroblast and prostate cancer cell lines. J Nanosci Nanotechnol 16:7599–7605CrossRefGoogle Scholar
  132. 132.
    Jadhav V, Ray P, Sachdeva G, Bhatt P (2016) Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21 WAF1/CIP1 expression via epigenetic remodeling in LNCaP and PC3 cell lines. Life Sci 148:41–52PubMedCrossRefGoogle Scholar
  133. 133.
    Ahn RW, Chen F, Chen H, Stern ST, Clogston JD, Patri AK et al (2010) A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin Cancer Res 16:3607–3617PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Chen H, Ahn R, Van den Bossche J, Thompson DH, O’Halloran TV (2009) Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol Cancer Ther 8:1955–1963PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Gortzi O, Papadimitriou E, Kontoyannis CG, Antimisiaris SG, Ioannou PV (2002) Arsonoliposomes, a novel class of arsenic-containing liposomes: effect of palmitoyl-arsonolipid-containing liposomes on the viability of cancer and normal cells in culture. Pharm Res 19:79–86PubMedCrossRefGoogle Scholar
  136. 136.
    Wu X, Han Z, Schur RM, Lu ZR (2016) Targeted mesoporous silica nanoparticles delivering arsenic trioxide with environment sensitive drug release for effective treatment of triple negative breast cancer. ACS Biomater Sci Eng 2:501–507CrossRefGoogle Scholar
  137. 137.
    Zeng L, Li J, Wang Y, Qian C, Chen Y, Zhang Q et al (2014) Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer. Nanomed Nanotechnol 10:463–472CrossRefGoogle Scholar
  138. 138.
    Fei W, Zhang Y, Han S, Tao J, Zheng H, Wei Y et al (2017) RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. ‎Int J Pharm 519:250–262PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang Q, Vakili MR, Li XF, Lavasanifar A, Le XC (2016) Terpolymer micelles for the delivery of arsenic to breast cancer cells: the effect of chain sequence on polymeric micellar characteristics and cancer cell uptake. Mol Pharm 13:4021–4033PubMedCrossRefGoogle Scholar
  140. 140.
    Zhu J, Chen Z, Lallemand-Breitenbach V, de Thé H (2002) How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer 2:705–714PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences, NMIMS Sunandan Divatia School of ScienceNMIMS (Deemed-to-be-University)MumbaiIndia

Personalised recommendations