JBIC Journal of Biological Inorganic Chemistry

, Volume 22, Issue 7, pp 999–1006 | Cite as

Complexes of gastrin with In3+, Ru3+ or Ga3+ ions are not recognised by the cholecystokinin 2 receptor

  • Marie Laval
  • Kathryn M. Marshall
  • John Sachinidis
  • Andrew Scott
  • Mal Eutick
  • Graham S. Baldwin
Original Paper


The peptide hormone gastrin (Gamide) binds trivalent metal ions, including indium (In), ruthenium (Ru) and gallium (Ga), with high affinity. Complexes of gastrin with chelated isotopes of In and Ga have previously been used for the location of tumours expressing the cholecystokinin 2 receptor (CCK2R). The aim of the present study was to purify the complexes of Gamide with radioactive isotopes of In, Ru or Ga and to investigate their ability to bind to the CCK2R. The radioactive Gamide complexes were purified on Sep-Pak C18 cartridges or by anion exchange HPLC. Binding to the CCK2R was assessed with a stably transfected clone of the gastric carcinoma cell line AGS. The 106Ru-Gamide complex could be eluted from the C18 cartridge; the 111In-Gamide and 68Ga-Gamide complexes bound irreversibly. All three complexes were successfully purified by anion exchange HPLC. The failure to detect binding of the 111In-Gamide, 106Ru-Gamide and 68Ga-Gamide complexes to the CCK2R suggests that formation of these complexes will not be useful for the detection of tumours expressing this receptor, but may instead provide alternative ways to block the actions of Gamide as a growth factor or a stimulant of gastric acid secretion.

Graphical abstract

The complexes between the hormone gastrin and radioactive 111In, 106Ru or 68Ga ions were purified by anion exchange HPLC using a NaCl gradient. The failure to detect binding of the complexes to the cholecystokinin 2 receptor suggests that metal ion treatment may provide novel approaches to block the biological actions of gastrin.


Gastrin Gallium Indium Iron Ruthenium 





Cholecystokinin 2 receptor




Amidated gastrin17


Glycine-extended gastrin17


4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid


Phosphate-buffered saline


Positron emission tomography


Roswell Park Memorial Institute medium


Standard error of the mean


Single photon emission computed tomography



This work was supported by the National Health and Medical Research Council of Australia [Grant Number 1020983 to GSB].


  1. 1.
    Dockray GJ et al (2001) The gastrins: their production and biological activities. Annu Rev Physiol 63:119–139CrossRefPubMedGoogle Scholar
  2. 2.
    Watson SA et al (2006) Gastrin—active participant or bystander in gastric carcinogenesis? Nat Rev Cancer 6(12):936–946CrossRefPubMedGoogle Scholar
  3. 3.
    Clarke PA et al (2006) Gastrin enhances the angiogenic potential of endothelial cells via modulation of heparin-binding epidermal-like growth factor. Cancer Res 66(7):3504–3512CrossRefPubMedGoogle Scholar
  4. 4.
    Todisco A et al (2001) Molecular mechanisms for the antiapoptotic action of gastrin. Am J Physiol Gastrointest Liver Physiol 280(2):G298–G307PubMedGoogle Scholar
  5. 5.
    Shulkes A, Baldwin GS (1997) Biology of gut cholecystokinin and gastrin receptors. Clin Exp Pharmacol Physiol 24(3–4):209–216CrossRefPubMedGoogle Scholar
  6. 6.
    Ito M et al (1993) Functional characterization of a human brain cholecystokinin-B receptor. A trophic effect of cholecystokinin and gastrin. J Biol Chem 268(24):18300–18305PubMedGoogle Scholar
  7. 7.
    Aly A, Shulkes A, Baldwin GS (2004) Gastrins, cholecystokinins and gastrointestinal cancer. Biochim Biophys Acta 1704(1):1–10PubMedGoogle Scholar
  8. 8.
    Ferrand A, Wang TC (2006) Gastrin and cancer: a review. Cancer Lett 238(1):15–29CrossRefPubMedGoogle Scholar
  9. 9.
    Reubi JC, Schaer JC, Waser B (1997) Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res 57(7):1377–1386PubMedGoogle Scholar
  10. 10.
    Roosenburg S et al (2011) Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors. Amino Acids 41(5):1049–1058CrossRefPubMedGoogle Scholar
  11. 11.
    von Guggenberg E et al (2012) Preclinical evaluation of radiolabeled DOTA-derivatized cyclic minigastrin analogs for targeting cholecystokinin receptor expressing malignancies. Mol Imaging Biol 14(3):366–375CrossRefGoogle Scholar
  12. 12.
    Naqvi SA et al (2013) Novel indium-111 labeled gastrin peptide analogues (MG-CL1-4): synthesis and quality control. Pak J Pharm Sci 26(2):299–305PubMedGoogle Scholar
  13. 13.
    Baldwin GS, Curtain CC, Sawyer WH (2001) Selective, high-affinity binding of ferric ions by glycine-extended gastrin(17). Biochemistry 40(36):10741–10746CrossRefPubMedGoogle Scholar
  14. 14.
    Pannequin J et al (2002) Ferric ions are essential for the biological activity of the hormone glycine-extended gastrin. J Biol Chem 277(50):48602–48609CrossRefPubMedGoogle Scholar
  15. 15.
    Baldwin GS, George GN, Pushie MJ (2015) High Affinity Binding of Indium and Ruthenium Ions by Gastrins. PLoS One 10(10):e0140126CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pannequin J et al (2004) A novel effect of bismuth ions: selective inhibition of the biological activity of glycine-extended gastrin. J Biol Chem 279(4):2453–2460CrossRefPubMedGoogle Scholar
  17. 17.
    Kovac S et al (2012) Bismuth ions inhibit the biological activity of non-amidated gastrins in vivo. Biochem Pharmacol 83(4):524–530CrossRefPubMedGoogle Scholar
  18. 18.
    Pannequin J et al (2004) Divergent roles for ferric ions in the biological activity of amidated and non-amidated gastrins. J Endocrinol 181(2):315–325CrossRefPubMedGoogle Scholar
  19. 19.
    Pagliocca A et al (2002) Stimulation of the gastrin-cholecystokinin(B) receptor promotes branching morphogenesis in gastric AGS cells. Am J Physiol Gastrointest Liver Physiol 283(2):G292–G299CrossRefPubMedGoogle Scholar
  20. 20.
    Morley JS, Tracy HJ, Gregory RA (1965) Structure-function relationships in the active C-terminal tetrapeptide sequence of gastrin. Nature 207(5004):1356–1359CrossRefPubMedGoogle Scholar
  21. 21.
    Singh P et al (2007) Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells. Oncogene 26(3):425–440CrossRefPubMedGoogle Scholar
  22. 22.
    Singh P (2007) Role of Annexin-II in GI cancers: interaction with gastrins/progastrins. Cancer Lett 252(1):19–35CrossRefPubMedGoogle Scholar
  23. 23.
    Kowalski-Chauvel A et al (2012) Identification of the F1-ATPase at the cell surface of colonic epithelial cells: role in mediating cell proliferation. J Biol Chem 287(49):41458–41468CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  • Marie Laval
    • 1
  • Kathryn M. Marshall
    • 1
  • John Sachinidis
    • 2
  • Andrew Scott
    • 2
    • 3
    • 4
  • Mal Eutick
    • 5
  • Graham S. Baldwin
    • 1
  1. 1.Department of SurgeryAustin Health, University of MelbourneMelbourneAustralia
  2. 2.Department of Molecular Imaging and TherapyAustin HealthMelbourneAustralia
  3. 3.Olivia Newton-John Cancer Research InstituteLa Trobe UniversityMelbourneAustralia
  4. 4.Department of MedicineUniversity of MelbourneMelbourneAustralia
  5. 5.Phebra Pty. LtdHunters HillAustralia

Personalised recommendations