Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species

  • Licia Paltrinieri
  • Giulia Di Rocco
  • Gianantonio Battistuzzi
  • Marco Borsari
  • Marco Sola
  • Antonio Ranieri
  • Laura Zanetti-Polzi
  • Isabella Daidone
  • Carlo Augusto Bortolotti
Original Paper

Abstract

Neuroglobin (Ngb) is a recently identified hexa-coordinated globin, expressed in the nervous system of humans. Its physiological role is still debated: one hypothesis is that Ngb serves as an electron transfer (ET) species, possibly by reducing cytochrome c and preventing it to initiate the apoptotic cascade. Here, we use the perturbed matrix method (PMM), a mixed quantum mechanics/molecular dynamics approach, to investigate the redox thermodynamics of two neuroglobins, namely the human Ngb and GLB-6 from invertebrate Caenorhabditis elegans. In particular, we calculate the reduction potential of the two globins, resulting in an excellent agreement with the experimental values, and we predict the reorganization energies, λ, which have not been determined experimentally yet. The calculated λ values match well those reported for known ET proteins and thereby support a potential involvement in vivo of the two globins in ET processes.

Keywords

Hexa-coordinated globins Reorganization energy Molecular dynamics simulation Cytochrome c Reduction potential Thermodynamics 

Supplementary material

775_2017_1455_MOESM1_ESM.pdf (1.1 mb)
Supplementary Material Details on the quantum chemical calculations and on the theoretical methods for the estimation of the reduction potential; First eigenvector components for GLB-6 and Ngb (PDF 1178 kb)

References

  1. 1.
    Blumberger J (2015) Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem Rev 115:11191–11238. doi:10.1021/acs.chemrev.5b00298 CrossRefPubMedGoogle Scholar
  2. 2.
    Gray HB, Winkler JR (2003) Electron tunneling through proteins. Q Rev Biophys 36:341–372. doi:10.1017/S0033583503003913 CrossRefPubMedGoogle Scholar
  3. 3.
    Fukuzumi S (2008) Development of bioinspired artificial photosynthetic systems. Phys Chem Chem Phys 10:2283–2297. doi:10.1039/B801198M CrossRefPubMedGoogle Scholar
  4. 4.
    Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18:228–234. doi:10.1016/j.copbio.2007.03.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391–409. doi:10.1146/annurev-micro-092611-150104 CrossRefPubMedGoogle Scholar
  6. 6.
    Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972. doi:10.1038/nature06522 CrossRefPubMedGoogle Scholar
  7. 7.
    Frauenfelder H, Chen G, Berendzen J et al (2009) A unified model of protein dynamics. Proc Natl Acad Sci 106:5129–5134. doi:10.1073/pnas.0900336106 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sagle LB, Zimmermann J, Matsuda S et al (2006) Redox-coupled dynamics and folding in cytochrome c. J Am Chem Soc 128:7909–7915. doi:10.1021/ja060851s CrossRefPubMedGoogle Scholar
  9. 9.
    Sigfridsson E, Olsson MHM, Ryde U (2001) Inner-sphere reorganization energy of iron-sulfur clusters studied with theoretical methods. Inorg Chem 40:2509–2519. doi:10.1021/ic000752u CrossRefPubMedGoogle Scholar
  10. 10.
    Simonson T (2002) Gaussian fluctuations and linear response in an electron transfer protein. Proc Natl Acad Sci U S A 99:6544–6549. doi:10.1073/pnas.082657099 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Migliore A, Corni S, Di Felice R, Molinari E (2006) First-principles density-functional theory calculations of electron-transfer rates in azurin dimers. J Chem Phys 124:64501. doi:10.1063/1.2166233 CrossRefPubMedGoogle Scholar
  12. 12.
    Bortolotti CA, Amadei A, Aschi M et al (2012) The reversible opening of water channels in cytochrome c modulates the heme iron reduction potential. J Am Chem Soc 134:13670–13678. doi:10.1021/ja3030356 CrossRefPubMedGoogle Scholar
  13. 13.
    Daidone I, Amadei A, Zaccanti F et al (2014) How the reorganization free energy affects the reduction potential of structurally homologous cytochromes. J Phys Chem Lett 5:1534–1540CrossRefPubMedGoogle Scholar
  14. 14.
    Daidone I, Paltrinieri L, Amadei A et al (2014) Unambiguous assignment of reduction potentials in diheme cytochromes. J Phys Chem B 118:7554–7560. doi:10.1021/jp506017a CrossRefGoogle Scholar
  15. 15.
    Zanetti-Polzi L, Daidone I, Bortolotti CA, Corni S (2014) Surface packing determines the redox potential shift of cytochrome c adsorbed on gold. J Am Chem Soc 136:12929–12937. doi:10.1021/ja505251a CrossRefPubMedGoogle Scholar
  16. 16.
    Zanetti-Polzi L, Bortolotti CA, Daidone I et al (2015) A few key residues determine the high redox potential shift in azurin mutants. Org Biomol Chem 13:11003–11013. doi:10.1039/C5OB01819F CrossRefPubMedGoogle Scholar
  17. 17.
    Holm L, Sander C (1993) Structural alignment of globins, phycocyanins and colicin A. FEBS Lett 315:301–306. doi:10.1016/0014-5793(93)81183-Z CrossRefPubMedGoogle Scholar
  18. 18.
    Pesce A, Dewilde S, Nardini M et al (2003) Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11:1087–1095. doi:10.1016/S0969-2126(03)00166-7 CrossRefPubMedGoogle Scholar
  19. 19.
    Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407:520–523. doi:10.1038/35035093 CrossRefPubMedGoogle Scholar
  20. 20.
    Trent JT, Watts RA, Hargrove MS (2001) Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J Biol Chem 276:30106–30110. doi:10.1074/jbc.C100300200 CrossRefPubMedGoogle Scholar
  21. 21.
    Halder P, Trent J III, Hargrove M (2007) Influence of the protein matrix on intramolecular histidine ligation in ferric and ferrous hexacoordinate hemoglobins. Proteins 66:172–182. doi:10.1002/prot CrossRefPubMedGoogle Scholar
  22. 22.
    Dewilde S, Kiger L, Burmester T et al (2001) Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem 276:38949–38955. doi:10.1074/jbc.M106438200 CrossRefPubMedGoogle Scholar
  23. 23.
    Burmester T, Hankeln T (2009) What is the function of neuroglobin? J Exp Biol 212:1423–1428. doi:10.1242/jeb.000729 CrossRefPubMedGoogle Scholar
  24. 24.
    Ascenzi P, Gustincich S, Marino M (2014) Mammalian nerve globins in search of functions. IUBMB Life 66:268–276. doi:10.1002/iub.1267 CrossRefPubMedGoogle Scholar
  25. 25.
    Burmester T, Hankeln T (2014) Function and evolution of vertebrate globins. Acta Physiol 211:501–514. doi:10.1111/apha.12312 CrossRefGoogle Scholar
  26. 26.
    Pesce A, Bolognesi M, Bocedi A et al (2002) Neuroglobin and cytoglobin. Fresh blood for the vertebrate globin family. EMBO Rep 3:1146–1151. doi:10.1093/embo-reports/kvf248 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brunori M, Giuffrè A, Nienhaus K et al (2005) Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. Proc Natl Acad Sci USA 102:8483–8488. doi:10.1073/pnas.0408766102 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Giuffrè A, Moschetti T, Vallone B, Brunori M (2008) Is neuroglobin a signal transducer? IUBMB Life 60:410–413. doi:10.1002/iub.88 CrossRefPubMedGoogle Scholar
  29. 29.
    Tiso M, Tejero J, Basu S et al (2011) Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 286:18277–18289. doi:10.1074/jbc.M110.159541 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fago A, Hundahl C, Dewilde S et al (2004) Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin: Molecular mechanisms and physiological significance. J Biol Chem 279:44417–44426. doi:10.1074/jbc.M407126200 CrossRefPubMedGoogle Scholar
  31. 31.
    Fago A, Mathews AJ, Moens L et al (2006) The reaction of neuroglobin with potential redox protein partners cytochrome b5 and cytochrome c. FEBS Lett 580:4884–4888. doi:10.1016/j.febslet.2006.08.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Bønding SH, Henty K, Dingley AJ, Brittain T (2008) The binding of cytochrome c to neuroglobin: a docking and surface plasmon resonance study. Int J Biol Macromol 43:295–299. doi:10.1016/j.ijbiomac.2008.07.003 CrossRefPubMedGoogle Scholar
  33. 33.
    Brittain T, Skommer J (2012) Does a redox cycle provide a mechanism for setting the capacity of neuroglobin to protect cells from apoptosis? IUBMB Life 64:419–422. doi:10.1002/iub.566 CrossRefPubMedGoogle Scholar
  34. 34.
    Suto D, Sato K, Ohba Y et al (2005) Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. Biochem J 392:399–406. doi:10.1042/BJ20050580 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yoon J, Herzik MA, Winter MB et al (2010) Structure and properties of a bis-histidyl ligated globin from Caenorhabditis elegans. Biochemistry 49:5662–5670. doi:10.1021/bi100710a CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Liu J, Chakraborty S, Hosseinzadeh P et al (2014) Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 114:4366–4469. doi:10.1021/cr400479b CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299CrossRefGoogle Scholar
  38. 38.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  39. 39.
    Blumberger J (2008) Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment. Phys Chem Chem Phys 10:5651–5667. doi:10.1039/b807444e CrossRefPubMedGoogle Scholar
  40. 40.
    Zanetti Polzi L, Amadei A, Aschi M, Daidone I (2011) New insight into the IR-spectra/structure relationship in amyloid fibrils: a theoretical study on a prion peptide. J Am Chem Soc 133:11414–11417CrossRefPubMedGoogle Scholar
  41. 41.
    Zanetti-Polzi L, Aschi M, Amadei A, Daidone I (2013) Simulation of the amide I infrared spectrum in photoinduced peptide folding/unfolding transitions. J Phys Chem B 117:12383–12390CrossRefPubMedGoogle Scholar
  42. 42.
    Lu N, Singh JK, Kofke DA (2003) Appropriate methods to combine forward and reverse free-energy perturbation averages. J Chem Phys 118:2977–2984. doi:10.1063/1.1537241 CrossRefGoogle Scholar
  43. 43.
    Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22:245–268. doi:10.1016/0021-9991(76)90078-4 CrossRefGoogle Scholar
  44. 44.
    de Ruiter A, Oostenbrink C (2012) Efficient and accurate free energy calculations on trypsin inhibitors. J Chem Theory Comput 8:3686–3695. doi:10.1021/ct200750p CrossRefPubMedGoogle Scholar
  45. 45.
    Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry and biology. Springer Series Chem Phys. doi:10.1007/978-3-540-38448-9 CrossRefGoogle Scholar
  46. 46.
    Amadei A, Daidone I, Bortolotti CA (2013) A general statistical mechanical approach for modeling redox thermodynamics: the reaction and reorganization free energies. RSC Adv 3:19657. doi:10.1039/c3ra42842g CrossRefGoogle Scholar
  47. 47.
    Guimarees BG, Hamdane D, Lechauve C et al (2014) The crystal structure of wild-type human brain neuroglobin reveals flexibility of the disulfide bond that regulates oxygen affinity. Acta Crystallogr Sect D: Biol Crystallogr 70:1005–1014. doi:10.1107/S1399004714000078 CrossRefGoogle Scholar
  48. 48.
    Kuntal BK, Aparoy P, Reddanna P (2010) EasyModeller: a graphical interface to MODELLER. BMC Res Notes 3:226. doi:10.1186/1756-0500-3-226 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. doi:10.1093/bioinformatics/btt055 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271. doi:10.1021/j100308a038 CrossRefGoogle Scholar
  51. 51.
    Reif MM, Hünenberger PH (2011) Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. J Chem Phys 134:144104. doi:10.1063/1.3567022 CrossRefPubMedGoogle Scholar
  52. 52.
    Brown D, Clarke JHR (1984) A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids. Mol Phys 51:1243–1252. doi:10.1080/00268978400100801 CrossRefGoogle Scholar
  53. 53.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H CrossRefGoogle Scholar
  54. 54.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089CrossRefGoogle Scholar
  55. 55.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefPubMedGoogle Scholar
  56. 56.
    Isse AA, Gennaro A (2010) Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents. J Phys Chem B 114:7894–7899. doi:10.1021/jp100402x CrossRefPubMedGoogle Scholar
  57. 57.
    Mauk AG, Moore GR (1997) Control of metalloprotein redox potentials: what does site-directed mutagenesis of hemoproteins tell us? JBIC, J Biol Inorg Chem 2:119–125. doi:10.1007/s007750050115 CrossRefGoogle Scholar
  58. 58.
    Bortolotti CA, Siwko ME, Castellini E et al (2011) The reorganization energy in cytochrome c is controlled by the accessibility of the heme to the solvent. J Phys Chem Lett 2:1761–1765CrossRefGoogle Scholar
  59. 59.
    Moser CC, Page CC, Dutton PL (2006) Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase. Philos Trans R Soc Lond B Biol Sci 361:1295–1305. doi:10.1098/rstb.2006.1868 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Khoshtariya DE, Dolidze TD, Shushanyan M, Davis KL (2010) Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions. Proc Natl Acad Sci USA 107:2757–2762. doi:10.1073/pnas.0910837107 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gray HB, Malmström BG, Williams RJP (2000) Copper coordination in blue proteins. J Biol Inorg Chem 5:551–559. doi:10.1007/s007750000146 CrossRefPubMedGoogle Scholar
  62. 62.
    Milischuk AA, Matyushov DV, Newton MD (2006) Activation entropy of electron transfer reactions. Chem Phys 324:172–194. doi:10.1016/j.chemphys.2005.11.037 CrossRefGoogle Scholar
  63. 63.
    Farver O, Marshall NM, Wherland S et al (2013) Designed azurins show lower reorganization free energies for intraprotein electron transfer. Proc Natl Acad Sci USA 110:10536–10540. doi:10.1073/pnas.1215081110 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Iwaki M, Itoh S (1989) Electron transfer in spinach photosystem I reaction center containing benzo-, naphtho- and anthraquinones in place of phylloquinone. FEBS Lett 256:11–16. doi:10.1016/0014-5793(89)81708-9 CrossRefGoogle Scholar
  65. 65.
    Moser CC, Farid TA, Chobot SE, Dutton PL (2006) Electron tunneling chains of mitochondria. Biochim Biophys Acta 1757:1096–1109. doi:10.1016/j.bbabio.2006.04.015 CrossRefPubMedGoogle Scholar
  66. 66.
    Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561CrossRefPubMedGoogle Scholar
  67. 67.
    Murgida DH, Hildebrandt P (2002) Electrostatic-field dependent activation energies modulate electron transfer of cytochrome c. J Phys ChemB 106:12814–12819CrossRefGoogle Scholar
  68. 68.
    Corni S (2005) The reorganization energy of azurin in bulk solution and in the electrochemical scanning tunneling microscopy setup. J Phys Chem B 109:3423–3430. doi:10.1021/jp0459920 CrossRefPubMedGoogle Scholar
  69. 69.
    Daidone I, Amadei A (2012) Essential dynamics: foundation and applications. Wiley Interdiscip Rev Comput Mol Sci 2:762–770. doi:10.1002/wcms.1099 CrossRefGoogle Scholar
  70. 70.
    Kiger L, Tilleman L, Geuens E et al (2011) Electron transfer function versus oxygen delivery: a comparative study for several hexacoordinated globins across the animal kingdom. PLoS One. doi:10.1371/journal.pone.0020478 PubMedPubMedCentralGoogle Scholar
  71. 71.
    Weiland TR, Kundu S, Trent JT et al (2004) Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics. J Am Chem Soc 126:11930–11935. doi:10.1021/ja046990w CrossRefPubMedGoogle Scholar
  72. 72.
    De Sanctis D, Pesce A, Nardini M et al (2004) Structure-function relationships in the growing hexa-coordinate hemoglobin sub-family. IUBMB Life 56:643–651. doi:10.1080/15216540500059640 CrossRefPubMedGoogle Scholar
  73. 73.
    Wilson MT, Greenwood C, Brunori M, Antonini E (1975) Kinetic studies on the reaction between cytochrome c oxidase and ferrocytochrome c. Biochem J 147:145–153CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Guidolin D, Agnati LF, Tortorella C et al (2014) Neuroglobin as a regulator of mitochondrial-dependent apoptosis: a bioinformatics analysis. Int J Mol Med 33:111–116. doi:10.3892/ijmm.2013.1564 PubMedGoogle Scholar
  75. 75.
    Kakar S, Hoffman FG, Storz JF et al (2010) Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 152:1–14. doi:10.1016/j.bpc.2010.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Huberts DHEW, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta Mol Cell Res 1803:520–525. doi:10.1016/j.bbamcr.2010.01.022 CrossRefGoogle Scholar
  77. 77.
    Jeffery CJ (2015) Why study moonlighting proteins? Front Genet 6:211. doi:10.3389/fgene.2015.00211 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  • Licia Paltrinieri
    • 1
  • Giulia Di Rocco
    • 1
  • Gianantonio Battistuzzi
    • 2
  • Marco Borsari
    • 2
  • Marco Sola
    • 1
  • Antonio Ranieri
    • 1
  • Laura Zanetti-Polzi
    • 3
  • Isabella Daidone
    • 3
  • Carlo Augusto Bortolotti
    • 1
    • 4
  1. 1.Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Department of Physical and Chemical SciencesUniversity of L’AquilaL’AquilaItaly
  4. 4.Center S3, CNR NANO, Institute of NanoscienceModenaItaly

Personalised recommendations