A method of expression for an oxygen-tolerant group III alcohol dehydrogenase from Pyrococcus horikoshii OT3

  • Chikanobu Sugimoto
  • Kouta Takeda
  • Yumi Kariya
  • Hirotoshi Matsumura
  • Masafumi Yohda
  • Hiroyuki Ohno
  • Nobuhumi Nakamura
Original Paper


NAD(P)-dependent group III alcohol dehydrogenases (ADHs), well known as iron-activated enzymes, generally lose their activities under aerobic conditions due to their oxygen-sensitivities. In this paper, we expressed an extremely thermostable group III ADH from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 (PhADH) heterologously in Escherichia coli. When purified from a culture medium containing nickel, the recombinant PhADH (Ni-PhADH) contained 0.85 ± 0.01 g-atoms of nickel per subunit. Ni-PhADH retained high activity under aerobic conditions (9.80 U mg−1), while the enzyme expressed without adding nickel contained 0.46 ± 0.01 g-atoms of iron per subunit and showed little activity (0.27 U mg−1). In the presence of oxygen, the activity of the Fe2+-reconstituted PhADH prepared from the Ni-PhADH was gradually decreased, whereas the Ni2+-reconstituted PhADH maintained enzymatic activity. These results indicated that PhADH with bound nickel ion was stable in oxygen. The activity of the Ni2+-reconstituted PhADH prepared from the expression without adding nickel was significantly lower than that from the Ni-PhADH, suggesting that binding a nickel ion to PhADH in this expression system contributed to protecting against inactivation during the expression and purification processes. Unlike other thermophilic group III ADHs, Ni-PhADH showed high affinity for NAD(H) rather than NADP(H). Furthermore, it showed an unusually high k cat value toward aldehyde reduction. The activity of Ni-PhADH for butanal reduction was increased to 60.7 U mg−1 with increasing the temperature to 95 °C. These findings provide a new strategy to obtain oxygen-sensitive group III ADHs.


Metalloenzyme Alcohol dehydrogenase (ADH) Nickel Extreme thermophile Archaea 



This work was financially supported by a Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows (Grant Number 14J08641 to K.T.). This work was partly supported by Building of Consortia for the Development of Human Resources in Science and Technology, MEXT, Japan. We thank Assoc. Prof. Makoto Sakurai, Ms. Ayumi Nakagawa and Mr. Hiromitsu Sasaki for the measurements of ICP-OES and Dr. Yasuaki Yamanaka and Mr. Tomohiro Miki for the measurements of SEC-MALS analysis.

Supplementary material

775_2017_1439_MOESM1_ESM.pdf (318 kb)
Supplementary material 1 (PDF 318 kb)


  1. 1.
    Reid MF, Fewson CA (1994) Crit Rev Microbiol 20(1):13–56CrossRefPubMedGoogle Scholar
  2. 2.
    Bruins ME, Janssen AEM, Boom RM (2001) Appl Biochem Biotechnol 90(2):155–186CrossRefPubMedGoogle Scholar
  3. 3.
    Vonck J, Arfman N, De Vries GE, Van Beeumen J, Van Bruggen EF, Dijkhuizen L (1991) J Biol Chem 266(6):3949–3954PubMedGoogle Scholar
  4. 4.
    Radianingtyas H, Wright PC (2003) FEMS Microbiol Rev 27(5):593–616CrossRefPubMedGoogle Scholar
  5. 5.
    Adams MWW (1994) FEMS Microbiol Rev 15(2–3):267–277Google Scholar
  6. 6.
    Woese CR, Kandler O, Wheelis ML (1990) Proc Natl Acad Sci USA 87(12):4576–4579CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ma K, Robb FT, Adams MWW (1994) Appl Environ Microbiol 60(2):562–568PubMedPubMedCentralGoogle Scholar
  8. 8.
    Ma K, Loessner H, Heider J, Johnson MK, Adams MWW (1995) J Bacteriol 177(16):4748–4756CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li D, Stevenson KJ (1997) J Bacteriol 179(13):4433–4437CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Antoine E, Rolland JL, Raffin JP, Dietrich J (1999) Eur J Biochem 264(3):880–889CrossRefPubMedGoogle Scholar
  11. 11.
    Ma K, Adams MWW (1999) J Bacteriol 181(4):1163–1170PubMedPubMedCentralGoogle Scholar
  12. 12.
    Ying X, Wang Y, Badiei HR, Karanassios V, Ma K (2007) Arch Microbiol 187(6):499–510CrossRefPubMedGoogle Scholar
  13. 13.
    Ying X, Grunden AM, Nie L, Adams MW, Ma K (2009) Extremophiles 13(2):299–311CrossRefPubMedGoogle Scholar
  14. 14.
    Neale AD, Scopes RK, Kelly JM, Wettenhall RE (1986) Eur J Biochem 154(1):119–124CrossRefPubMedGoogle Scholar
  15. 15.
    Cabiscol E, Aguilar J, Ros J (1994) J Biol Chem 269(9):6592–6597PubMedGoogle Scholar
  16. 16.
    Sridhara S, Wu TT, Chused TM, Lin ECC (1969) J Bacteriol 98(1):87–95PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Kikuchi H (1998) DNA Res 5(2):55–76CrossRefPubMedGoogle Scholar
  18. 18.
    Hirose M, Tohda H, Giga-Hama Y, Tsushima R, Zako T, Iizuka R, Pack C, Kinjo M, Ishii N, Yohda M (2005) J Biol Chem 280(38):32586–32593CrossRefPubMedGoogle Scholar
  19. 19.
    Gill SC, von Hippel PH (1989) Anal Biochem 182(2):319–326CrossRefPubMedGoogle Scholar
  20. 20.
    Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Methods Mol Biol 112:531–552PubMedGoogle Scholar
  21. 21.
    Ziegenhorn J, Senn M, Bucher T (1976) Clin Chem 22(2):151–160PubMedGoogle Scholar
  22. 22.
    Mulrooney SB, Hausinger RP (2003) J Bacteriol 185(1):126–134CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Elleuche S, Fodor K, Klippel B, von der Heyde A, Wilmanns M, Antranikian G (2013) Appl Microbiol Biotechnol 97(20):8963–8975CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  • Chikanobu Sugimoto
    • 1
  • Kouta Takeda
    • 1
  • Yumi Kariya
    • 1
  • Hirotoshi Matsumura
    • 2
  • Masafumi Yohda
    • 1
  • Hiroyuki Ohno
    • 1
  • Nobuhumi Nakamura
    • 1
  1. 1.Department of Biotechnology and Life ScienceTokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.Department of Life Science, Graduate School and Faculty of Engineering ScienceAkita UniversityAkitaJapan

Personalised recommendations