Advertisement

Cobalt complexes as internal standards for capillary zone electrophoresis–mass spectrometry studies in biological inorganic chemistry

  • Hannah U. Holtkamp
  • Stuart J. Morrow
  • Mario Kubanik
  • Christian G. Hartinger
Original Paper
Part of the following topical collections:
  1. AsBIC8: 8th Asian Biological Inorganic Chemistry Special Issue

Abstract

Run-by-run variations are very common in capillary electrophoretic (CE) separations and cause imprecision in both the migration times and the peak areas. This makes peak and kinetic trend identification difficult and error prone. With the aim to identify suitable standards for CE separations which are compatible with the common detectors UV, ESI-MS, and ICP-MS, the CoIII complexes [Co(en)3]Cl3, [Co(acac)3] and K[Co(EDTA)] were evaluated as internal standards in the reaction of the anticancer drug cisplatin and guanosine 5′-monophosphate as an example of a classical biological inorganic chemistry experiment. These CoIII chelate complexes were considered for their stability, accessibility, and the low detection limit for Co in ICP-MS. Furthermore, the CoIII complexes are positively and negatively charged as well as neutral, allowing the detection in different areas of the electropherograms. The background electrolytes were chosen to cover a wide pH range. The compatibility to the separation conditions was dependent on the ligands attached to the CoIII centers, with only the acetylacetonato (acac) complex being applicable in the pH range 2.8–9.0. Furthermore, because of being charge neutral, this compound could be used as an electroosmotic flow (EOF) marker. In general, employing Co complexes resulted in improved data sets, particularly with regard to the migration times and peak areas, which resulted, for example, in higher linear ranges for the quantification of cisplatin.

Graphical abstract

Keywords

CZE–ICP-MS Internal standards Co coordination compounds Cisplatin 5′-GMP 

Abbreviations

CZE

Capillary zone electrophoresis

BGE

Background electrolyte

ICP-MS

Inductively coupled plasma-mass spectrometry

ESI-MS

Electrospray ionization-mass spectrometry

5′-GMP

Guanosine 5′-monophosphate

[Co(en)3]Cl3

Tris(ethylenediamine)cobalt(III)

[Co(acac)3]

Tris(acetylacetonato)cobalt(III)

K[Co(EDTA)]

Potassium ethylenediaminetetraacetatocobaltate(III)

Notes

Acknowledgements

We thank the organizations and foundations that have supported our research efforts in this area, especially the University of Auckland (University of Auckland Doctoral Scholarship to H. H. and M. K.), the India-New Zealand Education Council, Education New Zealand, the India-New Zealand Research Institute, and the Royal Society of New Zealand and COST CM1105. We thank Auckland Science Analytical Services of the University of Auckland for access to their facilities. We are grateful to Prof. Gordon Miskelly for useful discussions.

Supplementary material

775_2016_1426_MOESM1_ESM.pdf (630 kb)
CZE–ESI-MS data; ICP-MS measurement parameters; kinetic data on the reaction of cisplatin with GMP; effects of internal standardization on the migration times; and BGE-dependent migration of cisplatin and its reaction products (PDF 629 kb)

References

  1. 1.
    Bytzek AK, Hartinger CG (2012) Electrophoresis 33:622–634CrossRefPubMedGoogle Scholar
  2. 2.
    Holtkamp H, Hartinger CG (2015) Drug Discov Today Technol 16:16–22CrossRefPubMedGoogle Scholar
  3. 3.
    Holtkamp H, Grabmann G, Hartinger CG (2015) Electrophoresis 37:959–972CrossRefGoogle Scholar
  4. 4.
    Grabmann G, Meier SM, Scaffidi-Domianello YY, Galanski M, Keppler BK, Hartinger CG (2012) J Chromatogr A 1267:156–161CrossRefPubMedGoogle Scholar
  5. 5.
    Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA and Keppler BK (2006) Dalton Trans:1796–1802. http://pubs.rsc.org/en/content/articlelanding/2006/dt/b511792e#!divAbstract
  6. 6.
    Dömötör O, Hartinger CG, Bytzek AK, Kiss T, Keppler BK, Enyedy EA (2013) J Biol Inorg Chem 18:9–17CrossRefPubMedGoogle Scholar
  7. 7.
    Warnke U, Rappel C, Meier H, Kloft C, Galanski M, Hartinger CG, Keppler BK, Jaehde U (2004) ChemBioChem 5:1543–1549CrossRefPubMedGoogle Scholar
  8. 8.
    Groessl M, Hartinger CG, Połeć-Pawlak K, Jarosz M, Dyson PJ, Keppler BK (2008) Chem Biodivers 5:1609–1614CrossRefPubMedGoogle Scholar
  9. 9.
    Groessl M, Hartinger CG, Polec-Pawlak K, Jarosz M, Keppler BK (2008) Electrophoresis 29:2224–2232CrossRefPubMedGoogle Scholar
  10. 10.
    Groessl M, Bytzek A, Hartinger CG (2009) Electrophoresis 30:2720–2727CrossRefPubMedGoogle Scholar
  11. 11.
    Bytzek AK, Enyedy ÉA, Kiss T, Keppler BK, Hartinger CG (2009) Electrophoresis 30:4075–4082CrossRefPubMedGoogle Scholar
  12. 12.
    Mayer BX (2001) J Chromatogr A 907:21–37CrossRefPubMedGoogle Scholar
  13. 13.
    Møller C, Stürup S, Hansen HR, Gammelgaard B (2009) J Anal At Spectrom 24:1208–1212CrossRefGoogle Scholar
  14. 14.
    Pröfrock D, Prange A (2012) Appl Spectrosc 66:843–868CrossRefPubMedGoogle Scholar
  15. 15.
    Wolf C, Schaumloffel D, Richarz A-N, Prange A, Bratter P (2003) Analyst 128:576–580CrossRefPubMedGoogle Scholar
  16. 16.
    Franze B, Engelhard C (2014) Anal Chem 86:5713–5720CrossRefPubMedGoogle Scholar
  17. 17.
    Bytzek AK, Reithofer MR, Galanski M, Groessl M, Keppler BK, Hartinger CG (2010) Electrophoresis 31:1144–1150CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shalhoub GM (1980) J Chem Educ 57:525CrossRefGoogle Scholar
  19. 19.
    Dwyer FP, Gyarfas EC, Mellor DP (1955) J Phys Chem 59:296–297CrossRefGoogle Scholar
  20. 20.
    Yang J, Bose S, Hage DS (1996) J Chromatogr A 735:209–220CrossRefGoogle Scholar
  21. 21.
    Groessl M, Hartinger CG, Dyson PJ, Keppler BK (2008) J Inorg Biochem 102:1060–1065CrossRefPubMedGoogle Scholar
  22. 22.
    Pröfrock D, Leonhard P, Prange A (2003) Anal Bioanal Chem 377:132–139CrossRefPubMedGoogle Scholar
  23. 23.
    Buckingham DA, Clark CR (1987) In: Wilkinson G, Gillard RD, McCleverty JA (eds) Comprehensive coordination chemistry: the synthesis, reactions, properties & applications of coordination compounds. Pergamon, Oxford, pp 635–900Google Scholar
  24. 24.
    Carbonaro RF, Stone AT (2005) Anal Chem 77:155–164CrossRefPubMedGoogle Scholar
  25. 25.
    Grabmann G, Keppler B, Hartinger C (2013) Anal Bioanal Chem 405:6417–6424CrossRefPubMedGoogle Scholar
  26. 26.
    Bytzek AK, Boeck K, Hermann G, Hann S, Keppler BK, Hartinger CG, Koellensperger G (2011) Metallomics 3:1049–1055CrossRefPubMedGoogle Scholar
  27. 27.
    Zabel R, Kullmann M, Kalayda GV, Jaehde U, Weber G (2015) Electrophoresis 36:509–517CrossRefPubMedGoogle Scholar
  28. 28.
    Bjerrum J, Rasmussen SE (1952) Acta Chem Scand 6:1265CrossRefGoogle Scholar
  29. 29.
    Navon G, Panigel R, Meyerstein D (1972) Inorg Chim Acta 6:299–302CrossRefGoogle Scholar
  30. 30.
    Zenker A, Galanski M, Bereuter TL, Keppler BK, Lindner W (2000) J Chromatogr B Biomed Appl 745:211–219CrossRefGoogle Scholar
  31. 31.
    Küng A, Strickmann DB, Galanski M, Keppler BK (2001) J Inorg Biochem 86:691–698CrossRefPubMedGoogle Scholar
  32. 32.
    Warnke U, Gysler J, Hofte B, Tjaden UR, van der Greef J, Kloft C, Schunack W, Jaehde U (2001) Electrophoresis 22:97–103CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  • Hannah U. Holtkamp
    • 1
  • Stuart J. Morrow
    • 1
  • Mario Kubanik
    • 1
  • Christian G. Hartinger
    • 1
  1. 1.School of Chemical SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations