JBIC Journal of Biological Inorganic Chemistry

, Volume 22, Issue 1, pp 153–160 | Cite as

New dinitrosyl iron complexes bound with physiologically active dipeptide carnosine

  • Konstantin B. Shumaev
  • Olga V. Kosmachevskaya
  • Elvira I. Nasybullina
  • Sergey V. Gromov
  • Alexander A. Novikov
  • Alexey F. Topunov
Original Paper

Abstract

Dinitrosyl iron complexes (DNICs) are physiological NO derivatives and account for many NO functions in biology. Polyfunctional dipeptide carnosine (beta-alanyl-l-histidine) is considered to be a very promising pharmacological agent. It was shown that in the system containing carnosine, iron ions and Angeli’s salt, a new type of DNICs bound with carnosine as ligand {(carnosine)2-Fe-(NO)2}, was formed. We studied how the carbonyl compound methylglyoxal influenced this process. Carnosine-bound DNICs appear to be one of the cell’s adaptation mechanisms when the amount of reactive carbonyl compounds increases at hyperglycemia. These complexes can also participate in signal and regulatory ways of NO and can act as protectors at oxidative and carbonyl stress conditions.

Keywords

Dinitrosyl iron complexes Carnosine Histidine Methylglyoxal Nitroxyl 

References

  1. 1.
    Quinn PJ, Boldyrev AA, Formazuyk VE (1992) Mol Aspects Med 13:379–444CrossRefPubMedGoogle Scholar
  2. 2.
    Gariballa S, Sinclair A (2000) Age Ageing 29:207–210CrossRefPubMedGoogle Scholar
  3. 3.
    Hipkiss AR, Brownson C (2000) Biogerontology 1:217–223CrossRefPubMedGoogle Scholar
  4. 4.
    Battah S, Ahmed N, Thornalley PJ (2002) Int Congr Ser 1245:107–111CrossRefGoogle Scholar
  5. 5.
    Aldini G, Maffei-Fracino R, Beretta G, Carini M (2005) BioFactors 24:77–87CrossRefPubMedGoogle Scholar
  6. 6.
    Hipkiss AR (2006) Ann NY Acad Sci 1067:369–374CrossRefPubMedGoogle Scholar
  7. 7.
    Gulevitch VS, Aminadgibi S (1900) Ber Deutsch Chem Geselsch 33:1902–1903CrossRefGoogle Scholar
  8. 8.
    Reddy VP, Garrett MR, Perry G, Smith MA (2005) Sci Aging Knowl Environ. doi:10.1126/sageke.2005.18.pe12 Google Scholar
  9. 9.
    Abe H (2000) Biochem Moscow 65:757–765Google Scholar
  10. 10.
    Decker EA, Livisay SA, Zhou SA (2000) Biochem Moscow 65:766–770Google Scholar
  11. 11.
    Boldyrev A, Bulygina E, Leinsoo T, Petrushanko I, Tsubone S, Abe H (2004) Comp Biochem Physiol B Biochem Mol Biol 137:81–88CrossRefPubMedGoogle Scholar
  12. 12.
    Shao L, Li QH, Tan Z (2004) Biochem Biophys Res Communs 324:931–936CrossRefGoogle Scholar
  13. 13.
    Kang JH (2005) Bull Korean Chem Soc 26:178–180CrossRefGoogle Scholar
  14. 14.
    Hipkiss AR, Michaelis J, Syrris P (1995) FEBS Lett 371:81–85CrossRefPubMedGoogle Scholar
  15. 15.
    Hipkiss AR, Worthington VC, Himsworth DTJ, Herwig W (1997) Biochim Biophys Acta 1380:46–54CrossRefGoogle Scholar
  16. 16.
    Hipkiss AR, Chana H (1998) Biochem Biophys Res Communs 248:28–32CrossRefGoogle Scholar
  17. 17.
    Voziyan PA, Khalifah RG, Thibaudeau C, Yildiz A, Jacob J, Serianni AS, Hudson BG (2003) J Biol Chem 278:46616–46624CrossRefPubMedGoogle Scholar
  18. 18.
    Goodarzi MT, Safari MR, Zal F (2006) Iran Biomed J 10:139–143Google Scholar
  19. 19.
    Baran J (2000) Biochem Moscow 65:789–797Google Scholar
  20. 20.
    Laguerre M, Lecomte J, Villeneuve P (2007) Prog Lipid Res 46:244–282CrossRefPubMedGoogle Scholar
  21. 21.
    Decker EA, Crum AD, Calvert JT (1992) J Agric Food Chem 40:756–759CrossRefGoogle Scholar
  22. 22.
    Vanin AF (2009) Nitric Oxide 21:1–13CrossRefPubMedGoogle Scholar
  23. 23.
    Hickok JR, Sahni S, Shen H, Arvind A, Antoniou C, Fung LWM, Thomas DD (2011) Free Radic Biol Med 51:1558–1566CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tsai ML, Tsou CC, Liaw WF (2015) Acc Chem Res 48:1184–1193CrossRefPubMedGoogle Scholar
  25. 25.
    Vanin AF (2016) Nitric Oxide 54:15–29CrossRefPubMedGoogle Scholar
  26. 26.
    Boese M, Mordvintcev PI, Vanin AF, Busse R, Molsch AJ (1995) J Biol Chem 270:29244–29249CrossRefPubMedGoogle Scholar
  27. 27.
    Vanin AF, van Faassen E (2007) In: van Faassen E, Vanin AF (eds) Radicals for life: the various forms of nitric oxide. Elsevier, Amsterdam, pp 223–227CrossRefGoogle Scholar
  28. 28.
    Bosworth CA, Toledo JC Jr, Zmijewski JW, Li Q, Lancaster JR Jr (2009) Proc Natl Acad Sci USA 106:4671–4676CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shumaev KB, Petrova NE, Zabbarova IV, Vanin AF, Topunov AF, Lankin VZ, Ruuge EK (2004) Biochem Moscow 69:569–574CrossRefGoogle Scholar
  30. 30.
    Shumaev KB, Gubkin AA, Gubkina SA, Gudkov LL, Sviryaeva IV, Timoshin AA, Topunov AF, Vanin AF, Ruuge EK (2006) Biofizika 51:472–477PubMedGoogle Scholar
  31. 31.
    Shumaev KB, Gubkin AA, Serezhenkov VA, Lobysheva II, Kosmachevskaya OV, Ruuge EK, Lankin VZ, Topunov AF, Vanin AF (2008) Nitric Oxide 18:37–46CrossRefPubMedGoogle Scholar
  32. 32.
    Shumaev KB, Kosmachevskaya OV, Timoshin AA, Vanin AF, Topunov AF (2008) Methods Enzymol 436:445–461CrossRefPubMedGoogle Scholar
  33. 33.
    Tinberg CE, Tonzetich ZJ, Wang H, Do LH, Yoda Y (2010) Cramer SP Lippard SJJ. Am Chem Soc 132:18168–18176CrossRefGoogle Scholar
  34. 34.
    Wang X, Sunderberg EB, Li L, Kantardjieff KA, Herron SR, Lim M, Ford PC (2005) Chem Commun 477–479Google Scholar
  35. 35.
    Huang HW, Tsou CC, Kuo TS, Liaw WF (2008) Inorg Chem 47:2196–2204CrossRefPubMedGoogle Scholar
  36. 36.
    Tsai FT, Kuo TS, Liaw WF (2009) J Am Chem Soc 131:3426–3427CrossRefPubMedGoogle Scholar
  37. 37.
    Tsai MC, Tsai FT, Lu TT, Tsai ML, Wei YC, Hsu IJ, Lee JF, Liaw WF (2009) Inorg Chem 48:9579–9591CrossRefPubMedGoogle Scholar
  38. 38.
    Hess JL, Hsieh CH, Brothers SM, Hall MB, Darensbourg MY (2011) J Am Chem Soc 133:20426–20434CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hess JL, Hsieh CH, Reibenspies JH, Darensbourg MY (2011) Inorg Chem 50:8541–8552CrossRefPubMedGoogle Scholar
  40. 40.
    Shumaev KB, Gubkina SA, Vanin AF, Burbaev DSh, Mokh VP, Topunov AF, Ruuge EK (2013) Biofizika 58:239–245PubMedGoogle Scholar
  41. 41.
    Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Circulation 114:597–605CrossRefPubMedGoogle Scholar
  42. 42.
    Dhar A, Dhar I, Desai KM, Wu L (2010) Brit J Pharmacol 161:1843–1856CrossRefGoogle Scholar
  43. 43.
    Brouwers O, Niessen PM, Haenen G, Miyata T, Brownlee M, Stehouwer CD, De Mey JG, Schalkwijk CG (2010) Diabetologia 53:989–1000CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chang T, Wang R, Wu L (2005) Free Radical Biol Med 38:286–293CrossRefGoogle Scholar
  45. 45.
    Yim H-S, Kang S-O, Hah YC, Chock PB, Yim MB (1995) J Biol Chem 270:28228–28233CrossRefPubMedGoogle Scholar
  46. 46.
    Rosca MG, Mustada TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, Brownlee M, Monnier VM, Weiss MF (2005) Am J Physiol Renal 289:420–430CrossRefGoogle Scholar
  47. 47.
    Shumaev KB, Gubkina SA, Kumskova EM, Shepelkova GS, Ruuge EK, Lankin VZ (2009) Biochem Moscow 74:461–466CrossRefGoogle Scholar
  48. 48.
    Kalapos MP, Desai KM, Wu L (2010) In: Bondy S, Maiese K (eds) Oxidative stress in applied basic research and clinical practice: aging radicals for live: the various forms of nitric oxide. Springer, NY, pp 149–167Google Scholar
  49. 49.
    Kosmachevskaya OV, Shumaev KB, Nasybullina EI, Gubkina SA, Topunov AF (2013) Hemoglobin 37:205–218CrossRefPubMedGoogle Scholar
  50. 50.
    Kosmachevskaya OV, Shumaev KB, Nasybullina EI, Topunov AF (2014) Clin Chem Lab Med 52:161–168CrossRefPubMedGoogle Scholar
  51. 51.
    Pacher P, Beckman JS, Liaudet L (2007) Physiol Rev 87:315–424CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Takahashi S, Nakashima Y, Toda K (2009) Biol Pharm Bull 32:1836–1839CrossRefPubMedGoogle Scholar
  53. 53.
    Severina IS, Bussygina OG, Pyatakova NV (2000) Biochem Moscow 65:783–788Google Scholar
  54. 54.
    Harrop TC, Song D, Lippard SJJ (2007) Inorg Biochem 101:1730–1738CrossRefGoogle Scholar
  55. 55.
    Speelman AL, Zhang B, Silakov A, Skodje KM, Alp EE, Zhao J, Hu MY, Kim E, Krebs C, Lehnert N (2016) Inorg Chem 55:5485–5501CrossRefPubMedGoogle Scholar
  56. 56.
    Vanin AF, Poltorakov AP, Mikoyan VD, Kubrina LN, Burbaev DSh (2010) Nitric Oxide 23:136–149CrossRefPubMedGoogle Scholar
  57. 57.
    Vanin AF, Burbaev DSH (2011) J Biophys. doi:10.1155/2011/878236 PubMedGoogle Scholar
  58. 58.
    Paolocci N, Jackson MI, Lopez BE, Miranda K, Tocchetti CG, Wink DA, Hobbs AJ, Fukuto JM (2007) Pharmacol Ther 113:442–458CrossRefPubMedGoogle Scholar
  59. 59.
    Kemp-Harper BK (2011) Antioxid Redox Signal 14:1609–1613CrossRefPubMedGoogle Scholar
  60. 60.
    Switzer CH, Flores-Santana W, Mancardi D, Donzelli S, Basudhar D, Ridnour LA, Miranda KM, Fukuto JM, Paolocci N, Wink DA (2009) Biochim Biophys Acta 787:835–840CrossRefGoogle Scholar
  61. 61.
    Lu TT, Chen CH, Liaw WF (2010) Chem Eur J 2010(16):8088–8095CrossRefGoogle Scholar
  62. 62.
    Hung MC, Tsai MC, Lee GH, Liaw WF (2006) Inorg Chem 45:6041–6047CrossRefPubMedGoogle Scholar
  63. 63.
    Enemark JH, Feltham RD (1974) Coord Chem Rev 13:339–406CrossRefGoogle Scholar
  64. 64.
    Zhou YM, Ye XR, Xin FB, Xin XQ (1999) Trans Met Chem 24:118–120CrossRefGoogle Scholar
  65. 65.
    Hobart LJ, Seibel I, Yeargans GS, Seidler NW (2004) Life Sci 75:1379–1389CrossRefPubMedGoogle Scholar
  66. 66.
    Olabe JA (2008) Dalton Trans, 3633–3648Google Scholar
  67. 67.
    Price DL, Rhett PM, Thorpe SR, Baynes JW (2001) J Biol Chem 276:48967–48972CrossRefPubMedGoogle Scholar
  68. 68.
    Stojanovic S, Stanic D, Nicolic M, Spasic M, Niketic V (2004) Nitric Oxide 11:256–262CrossRefPubMedGoogle Scholar
  69. 69.
    Irvine JC, Ritchie RH, Favaloro JL, Andrew KL, Widdop RE, Kemp-Harper BK (2008) Trends Pharmacol Sci 29:601–608CrossRefPubMedGoogle Scholar
  70. 70.
    Wink DA, Feelisch M, Fukuto J, Chistodoulou D, Jourd’heuil D, Grisham MB, Vodovotz Y, Cook JA, Krishna M, DeGraff WG, Kim S, Gamson J, Mitchell JB (1998) Arch Biochem Biophys 351:66–74CrossRefPubMedGoogle Scholar
  71. 71.
    Ma XL, Gao F, Liu GL, Lopez BL, Christopher TA, Fukuto JM, Wink DA, Feelisch M (1999) Proc Natl Acad Sci USA 96:14617–14622CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hewett SJ, Espey MG, Uliasz TF, Wink DA (2006) Free Radic Biol Med 39:1478–1488CrossRefGoogle Scholar
  73. 73.
    Shiva S, Crawford JH, Ramachandran A, Ceaser EK, Hillson T, Brookes PS, Patel RP, Darley-Usmar VM (2004) Biochem J 379:359–366CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Fukuto JM, Switzer CH, Miranda KM, Wink DA (2005) Annu Rev Pharmacol Toxicol 45:335–355CrossRefPubMedGoogle Scholar
  75. 75.
    Calabrese V, Colombrita C, Guagliano E, Sapienza M, Ravagna A, Cardile V, Scapagnini G, Santoro AM, Mangiameli A, Butterfield DA, Giuffrida Stella AM, Rizzarelli E (2005) Neurochem Res 30:797–807CrossRefPubMedGoogle Scholar
  76. 76.
    Nicoletti VG, Santoro MS, Grasso G, Vagliasindi LI, Giuffrida ML, Cuppari C, Purrello VS, Giuffrida Stella AM, Rizzarelli E (2007) J Neurosci Res 85:2239–2245CrossRefPubMedGoogle Scholar
  77. 77.
    Shumaev KB, Kosmachevskaya OV, Chumikina LV, Topunov AF (2016) Nat Prod Commun 11:1189–1192Google Scholar

Copyright information

© SBIC 2016

Authors and Affiliations

  • Konstantin B. Shumaev
    • 1
  • Olga V. Kosmachevskaya
    • 1
  • Elvira I. Nasybullina
    • 1
  • Sergey V. Gromov
    • 2
  • Alexander A. Novikov
    • 2
  • Alexey F. Topunov
    • 1
  1. 1.Bach Institute of BiochemistryResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussian Federation
  2. 2.National University of Science and Technology MISiSMoscowRussian Federation

Personalised recommendations