Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 21, Issue 8, pp 931–944 | Cite as

Cytotoxic activity of expanded coordination bis-thiosemicarbazones and copper complexes thereof

  • Fady N. Akladios
  • Scott D. Andrew
  • Christopher J. Parkinson
Original Paper

Abstract

A series of bis-thiosemicarbazone agents with coordinating groups capable of multiple metal coordination modes has been generated and evaluated for potential cytotoxic effects against melanoma (MelRm) and breast adenocarcinoma (MCF-7) cell lines. The bis-thiosemicarbazones in this study generally demonstrated superior cytotoxic activity against MelRm than MCF-7 in the absence of metal ion supplementation, but in most cases could not be considered superior to the reference thiosemicarbazone Dp44mT. The key structural features for the cytotoxic activity were the central metal binding atom on the aromatic core, the thiocarbonyl residue and the nature of substitution on the N4-terminus in terms of size and lipophilicity. The cytotoxicity of bis-thiosemicarbazone ligands improved significantly with Cu(II) supplementation, particularly against MCF-7 cells. The mechanism of cytotoxicity of bis-thiosemicarbazones was proposed to be dependent on the combined effect of metal mobilisation and ROS generation which is so called a “double-punch effect”.

Keywords

Copper Cytotoxicity Reactive oxygen species (ROS) Bis-thiosemicarbazone (Bis-TSC) 

Notes

Acknowledgments

F. Akladios acknowledges the receipt of an Australian Postgraduate Award (APA). CJP wishes to thank the CSU Pharmacy Foundation for a grant partially funding this study. CJP and SDA thank the Kolling Institute (Royal North Shore Hospital) for the donation and characterization of the MCF-7 cell line employed in this study and Dr. N. Proschogo and Dr. I. Luck (University of Sydney) for the provision of mass spectrometry and NMR expertise. We thank Mr. T. Belshaw for providing the analysis of copper levels in growth media.

References

  1. 1.
    Le NTV, Richardson DR (2002) Biochimica et Biophysica Acta (BBA). Rev Cancer 1603:31–46Google Scholar
  2. 2.
    Aouad F, Florence A, Zhang Y, Collins F, Henry C, Ward RJ, Crichton RR (2002) Inorg Chim Acta 339:470–480CrossRefGoogle Scholar
  3. 3.
    Becton DL, Roberts B (1989) Cancer Res 49:4809–4812PubMedGoogle Scholar
  4. 4.
    Blatt J, Stitely S (1987) Cancer Res 47:1749–1750PubMedGoogle Scholar
  5. 5.
    Yu Y, Kalinowski DS, Kovacevic Z, Siafakas AR, Jansson PJ, Stefani C, Lovejoy DB, Sharpe PC, Bernhardt PV, Richardson DR (2009) J Med Chem 52:5271–5294CrossRefPubMedGoogle Scholar
  6. 6.
    Finch RA, Liu M-C, Grill SP, Rose WC, Loomis R, Vasquez KM, Cheng Y-C, Sartorelli AC (2000) Biochem Pharmacol 59:983–991CrossRefPubMedGoogle Scholar
  7. 7.
    Whitnall M, Howard J, Ponka P, Richardson DR (2006) Proc Natl Acad Sci 103:14901–14906CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gao J, Richardson DR (2001) Blood 98:842–850CrossRefPubMedGoogle Scholar
  9. 9.
    Darnell G, Richardson D (1999) Blood 94:781–792PubMedGoogle Scholar
  10. 10.
    Richardson DR, Sharpe PC, Lovejoy DB, Senaratne D, Kalinowski DS, Islam M, Bernhardt PV (2006) J Med Chem 49:6510–6521CrossRefPubMedGoogle Scholar
  11. 11.
    Kalinowski DS, Richardson DR (2007) Chem Res Toxicol 20:715–720CrossRefPubMedGoogle Scholar
  12. 12.
    Kalinowski DS, Yu Y, Sharpe PC, Islam M, Liao Y-T, Lovejoy DB, Kumar N, Bernhardt PV, Richardson DR (2007) J Med Chem 50:3716–3729CrossRefPubMedGoogle Scholar
  13. 13.
    Lovejoy DB, Jansson PJ, Brunk UT, Wong J, Ponka P, Richardson DR (2011) Cancer Res 71:5871–5880CrossRefPubMedGoogle Scholar
  14. 14.
    Lovejoy DB, Richardson DR (2002) Blood 100:666–676CrossRefPubMedGoogle Scholar
  15. 15.
    Yuan J, Lovejoy DB, Richardson DR (2004) Blood 104:1450–1458CrossRefPubMedGoogle Scholar
  16. 16.
    Akladios FN, Andrew SD, Parkinson CJ (2016) Biometals 29:157–170CrossRefPubMedGoogle Scholar
  17. 17.
    Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H (1997) J Nucl Med 38:1155PubMedGoogle Scholar
  18. 18.
    Maurer RI, Blower PJ, Dilworth JR, Reynolds CA, Zheng Y, Mullen GE (2002) J Med Chem 45:1420–1431CrossRefPubMedGoogle Scholar
  19. 19.
    Castle TC, Maurer RI, Sowrey FE, Went MJ, Reynolds CA, McInnes EJ, Blower PJ (2003) J Am Chem Soc 125:10040–10049CrossRefPubMedGoogle Scholar
  20. 20.
    Blower PJ, Castle TC, Cowley AR, Dilworth JR, Donnelly PS, Labisbal E, Sowrey FE, Teat SJ, Went MJ (2003) Dalton Trans 23:4416–4425CrossRefGoogle Scholar
  21. 21.
    Blower PJ, Dilworth JR, Maurer RI, Mullen GD, Reynolds CA, Zheng Y (2001) J Inorg Biochem 85:15–22CrossRefPubMedGoogle Scholar
  22. 22.
    Stefani C, Al-Eisawi Z, Jansson PJ, Kalinowski DS, Richardson DR (2015) J Inorg Biochem 152:20–37CrossRefPubMedGoogle Scholar
  23. 23.
    Barry V, Conalty M, O’Sullivan J (1966) Cancer Res 26:2165–2168PubMedGoogle Scholar
  24. 24.
    Freedlander B, French FA (1958) Cancer Res 18:360–363PubMedGoogle Scholar
  25. 25.
    Sartorelli AC, Booth BA (1967) Cancer Res 27:1614–1619PubMedGoogle Scholar
  26. 26.
    Petering H, VanGiessen G, Crim J, Buskirk H (1966) J Med Chem 9:420–421CrossRefPubMedGoogle Scholar
  27. 27.
    Kessel D, McElhinney RS (1975) Mol Pharmacol 11:298–309PubMedGoogle Scholar
  28. 28.
    Brown CA, Kaminsky W, Claborn KA, Goldberg KI, West DX (2002) J Braz Chem Soc 13:10–18CrossRefGoogle Scholar
  29. 29.
    Pedrido R, Bermejo MR, Romero MJ, Vázquez M, González-Noya AM, Maneiro M, Rodríguez MJ, Fernández MI (2005) Dalton Trans (3):572–579Google Scholar
  30. 30.
    Pedrido R, González-Noya AM, Romero MJ, Martínez-Calvo M, López MV, Gómez-Fórneas E, Zaragoza G, Bermejo MR (2008) Dalton Trans 47:6776–6787CrossRefGoogle Scholar
  31. 31.
    Panja A, Campana C, Leavitt C, Van Stipdonk MJ, Eichhorn DM (2009) Inorg Chim Acta 362:1348–1354CrossRefGoogle Scholar
  32. 32.
    Matesanz AI, Leitao I, Souza P (2013) J Inorg Biochem 125:26–31CrossRefPubMedGoogle Scholar
  33. 33.
    Kinfe HH, Belay YH (2013) S Afr J Chem 66:130–135Google Scholar
  34. 34.
    Kulandaivelu U, Padmini VG, Suneetha K, Shireesha B, Vidyasagar JV, Rao TR, KN J, Basu A, Jayaprakash V (2011) Archiv der Pharmazie 344:84–90Google Scholar
  35. 35.
    D’Amico J, Charleston WV (1966) Google PatentsGoogle Scholar
  36. 36.
    Mohan M, Agarawal A, Jha N (1988) J Inorg Biochem 34:41–54CrossRefPubMedGoogle Scholar
  37. 37.
    Cobine PA, Pierrel F, Bestwick ML, Winge DR (2006) J Biol Chem 281:36552–36559CrossRefPubMedGoogle Scholar
  38. 38.
    Verhaegh GW, Richard MJ, Hainaut P (1997) Mol Cell Biol 17(10):5699–5706CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Siriwardana G, Seligman PA (2015) Phys Rep 3:e12341CrossRefGoogle Scholar
  40. 40.
    Noulsri E, Richardson DR, Lerdwana S, Fucharoen S, Yamagishi T, Kalinowski DS, Pattanapanyasat K (2009) Am J Hematol 84:170–176CrossRefPubMedGoogle Scholar
  41. 41.
    Choi H, Yang Z, Weisshaar JC (2015) Proc Natl Acad Sci 112(3):E303–E310CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) FEBS Lett 358(1):1–3CrossRefPubMedGoogle Scholar
  43. 43.
    Hileman EO, Liu J, Albitar M, Keating MJ, Huang P (2004) Cancer Chemother Pharmacol 53(3):209–219CrossRefPubMedGoogle Scholar
  44. 44.
    Behrend L, Henderson G, Zwacka RM (2003) Biochem Soc Trans 31(Pt 6):1441–1444CrossRefPubMedGoogle Scholar
  45. 45.
    Akladios FN, Andrew SD, Parkinson CJ (2016) J Biol Inorg Chem 21(3):407–419CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2016

Authors and Affiliations

  • Fady N. Akladios
    • 1
  • Scott D. Andrew
    • 1
  • Christopher J. Parkinson
    • 1
  1. 1.School of Biomedical SciencesCharles Sturt UniversityOrangeAustralia

Personalised recommendations