Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 21, Issue 5–6, pp 745–755 | Cite as

The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study

  • Takehiro OhtaEmail author
  • Perumandla Nagaraju
  • Jin-Gang Liu
  • Takashi Ogura
  • Yoshinori Naruta
Original Paper
Part of the following topical collections:
  1. E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry

Abstract

Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a’s of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born–Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe–O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O–O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions.

Keywords

Computational chemistry Density functional theory Dioxygen Heme Model compound Porphyrin Electrochemistry 

Notes

Acknowledgments

This work was financially supported by Scientific Research (C) (No. 24550080) and Scientific Research on Innovative Area (No. 25109535) to T.O. from JSPS and by the Elemental Science and Technology Project to Y.N. from the MEXT of Japan. NP thanks the Mitsubishi UFJ Trust Scholarship. JGL is grateful to the NSF of China (No. 21271072, 21571062), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Supplementary material

775_2016_1380_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1760 kb)

References

  1. 1.
    Jasinski RJ (1964) Nature 201:1212–1213CrossRefGoogle Scholar
  2. 2.
    Anson FC, Shi C, Steiger B (1997) Acc Chem Res 30:437–444CrossRefGoogle Scholar
  3. 3.
    Savéant JM (2008) Chem Rev 108:2348–2378CrossRefPubMedGoogle Scholar
  4. 4.
    Warren JJ, Tronic TA, Mayer JM (2010) Chem Rev 110:6961–7001CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Solomon EI, Kjaergaard CH, Heppner DE (2015) Molecular properties and reaction mechanism of multicopper oxidases related to their use in biofuel cells. In: Lewenstam A, Gorton L (eds) Electrochemical processes in biological systems. Wiley, HobokenGoogle Scholar
  6. 6.
    Armstrong FA, Hirst J (2011) Proc Natl Acad Sci USA 108:14049–14054CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gewirth AA, Thorum MS (2010) Inorg Chem 49:3557–3566CrossRefPubMedGoogle Scholar
  8. 8.
    Rosenthal J, Nocera DG (2007) Acc Chem Res 40:543–553CrossRefPubMedGoogle Scholar
  9. 9.
    Babcock GT, Wikström M (1992) Nature 356:301–309CrossRefPubMedGoogle Scholar
  10. 10.
    Han S, Ching YC, Rousseau DL (1990) Nature 348:89–90CrossRefPubMedGoogle Scholar
  11. 11.
    Yoshikawa S, Shimada A (2015) Chem Rev 115:1936–1989CrossRefPubMedGoogle Scholar
  12. 12.
    Ogura T, Kitagawa T (2004) Biochim Biophys Acta 1655:290–297CrossRefPubMedGoogle Scholar
  13. 13.
    Miura Y, Tsujimura S, Kurose S, Kamitaka Y, Kataoka K, Sakurai T, Kano K (2009) Fuel Cells 9:70–78CrossRefGoogle Scholar
  14. 14.
    Agbo P, Heath JR, Gray HB (2014) J Am Chem Soc 136:13882–13887CrossRefPubMedGoogle Scholar
  15. 15.
    Kuwana T, Fujihara M, Sunakawa K, Osa T (1978) J Electroanal Chem Interfacial Electrochem 88:299–303CrossRefGoogle Scholar
  16. 16.
    Shi C, Anson FC (1990) Inorg Chem 29:4298–4305CrossRefGoogle Scholar
  17. 17.
    Hematian H, Garcia-Bosch I, Karlin KD (2015) Acc Chem Res 48:2462–2474CrossRefPubMedGoogle Scholar
  18. 18.
    Chatterjee S, Sengupta K, Hematian S, Karlin KD, Dey A (2015) J Am Chem Soc 137:12897–12905CrossRefPubMedGoogle Scholar
  19. 19.
    Collman JP, Decréau RA, Yan Y, Yoon J, Solomon EI (2007) J Am Chem Soc 127:5794–5795CrossRefGoogle Scholar
  20. 20.
    Collman JP, Devaraj NK, Decréau RA, Yang Y, Yan Y, Ebina W, Eberspacher TA, Chidsey CED (2007) Science 315:1565–1568CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu JG, Naruta Y, Tani F (2005) Angew Chem Int Ed 44:1836–1840CrossRefGoogle Scholar
  22. 22.
    Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) J Am Chem Soc 102:6027–6036CrossRefGoogle Scholar
  23. 23.
    Chang C, Deng Y, Heyduk AF, Chang CK, Nocera DG (2000) Inorg Chem 39:959–966CrossRefPubMedGoogle Scholar
  24. 24.
    Samanta S, Sengupta K, Mittra K, Bandyopadhyay S, Dey A (2012) Chem Commun 48:7631–7633CrossRefGoogle Scholar
  25. 25.
    Amanullah SK, Das PK, Samanta S, Dey A (2015) Chem Commun 51:10010–10013CrossRefGoogle Scholar
  26. 26.
    Schechter A, Stanevsky M, Mahammed A, Gross Z (2012) Inorg Chem 51:22–24CrossRefPubMedGoogle Scholar
  27. 27.
    Chang CJ, Chng LL, Nocera DG (2003) J Am Chem Soc 125:1866–1876CrossRefPubMedGoogle Scholar
  28. 28.
    Carver CT, Matson BD, Mayer JM (2012) J Am Chem Soc 134:5444–5447CrossRefPubMedGoogle Scholar
  29. 29.
    Rigsby ML, Wasylenko DJ, Pegis ML, Mayer JM (2015) J Am Chem Soc 137:4296–4299CrossRefPubMedGoogle Scholar
  30. 30.
    Nagaraju P, Ohta T, Liu JG, Ogura T, Naruta Y (2016) Chem Commun. doi: 10.1039/c6cc02162j (in press)
  31. 31.
    Liu JG, Ohta T, Yamaguchi S, Ogura T, Sakamoto S, Maeda Y, Naruta Y (2009) Angew Chem Int Ed 48:9262–9267CrossRefGoogle Scholar
  32. 32.
    Liu JG, Shimizu Y, Ohta T, Naruta Y (2010) J Am Chem Soc 132:3672–3673CrossRefPubMedGoogle Scholar
  33. 33.
    Ohta T, Liu JG, Saito M, Kobayashi Y, Yoda Y, Seto M, Naruta Y (2012) J Phys Chem B 116:13831–13838CrossRefPubMedGoogle Scholar
  34. 34.
    Ohta T, Liu JG, Naruta Y (2013) Coord Chem Rev 257:407–413CrossRefGoogle Scholar
  35. 35.
    Ohta T, Liu JG, Nagaraju P, Ogura T, Naruta Y (2015) Chem Commun 51:12407–12410CrossRefGoogle Scholar
  36. 36.
    Costentin C, Dridi H, Savéant JM (2015) J Am Chem Soc 137:13535–13544CrossRefPubMedGoogle Scholar
  37. 37.
    Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Int J Quantum Chem 113:2110–2142CrossRefGoogle Scholar
  38. 38.
    Lovell T, Himo F, Han WG, Noodleman L (2003) Coord Chem Rev 238–239:211–232CrossRefGoogle Scholar
  39. 39.
    Neese F (2009) Coord Chem Rev 253:526–563CrossRefGoogle Scholar
  40. 40.
    Ghosh A (2006) J Biol Inorg Chem 11:712–724CrossRefPubMedGoogle Scholar
  41. 41.
    Mittra K, Sengupta K, Singha A, Bandyopadhyay S, Chatterjee S, Rana A, Samanta S, Dey A (2016) J Inorg Biochem 155:82–91CrossRefPubMedGoogle Scholar
  42. 42.
    Scherlis DA, Cococcioni M, Sit P, Marzari N (2007) J Phys Chem B 111:7348–7391CrossRefGoogle Scholar
  43. 43.
    de Visser SP, Quesne MG, Martin B, Comba P, Ryde U (2014) Chem Commun 50:262–282CrossRefGoogle Scholar
  44. 44.
    Chen H, Ikeda-Saito M, Shaik S (2008) J Am Chem Soc 130:14778–14790CrossRefPubMedGoogle Scholar
  45. 45.
    Yamaguchi K, Jensen F, Dorigo A, Houk K (1988) Chem Phys Lett 149:537–542CrossRefGoogle Scholar
  46. 46.
    Li J, Fisher CL, Chen JL, Bashford D, Noodleman L (1996) Inorg Chem 35:4694–4702CrossRefGoogle Scholar
  47. 47.
    Roy LE, Jakubikova E, Guthrie G, Batista ER (2009) J Phys Chem A 113:6745–6750CrossRefPubMedGoogle Scholar
  48. 48.
    Wang T, Brudvig G, Batista ER (2010) J Chem Theory Comput 6:755–760CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Baik M-H, Friesner RA (2002) J Phys Chem A 106:7407–7412CrossRefGoogle Scholar
  50. 50.
    Reiss H, Heller A (1985) J Phys Chem A 89:4207–4213CrossRefGoogle Scholar
  51. 51.
    Trasatti S (1986) Pure Appl Chem 58:955–966Google Scholar
  52. 52.
    Isse AA, Gennaro A (2010) J Phys Chem B 114:7894–7899CrossRefPubMedGoogle Scholar
  53. 53.
    Tawa GJ, Topol IA, Burt SK (1998) J Chem Phys 109:4852–4863CrossRefGoogle Scholar
  54. 54.
    Sundstrom EJ, Yang X, Thoi VS, Karunadasa HI, Chang CJ, Long JR, Head-Gordon M (2012) J Am Chem Soc 134:5233–5242CrossRefPubMedGoogle Scholar
  55. 55.
    Noodleman L, Du W-GH, Fee JA, Götz W, Walker RC (2014) Inorg Chem 53:6458–6472CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Coryell CD, Stitt F, Pauling L (1937) J Am Chem Soc 59:633–642CrossRefGoogle Scholar
  57. 57.
    Sitter AJ, Shifflett JR, Terner J (1988) J Biol Chem 263:13032–13038PubMedGoogle Scholar
  58. 58.
    Yamamoto Y, Nagao S, Hirai Y, Tai H, Suzuki A (2012) Polym J 44:907–912CrossRefGoogle Scholar
  59. 59.
    Namazian M, Lin CY, Coote ML (2010) J Chem Theory Comput 6:2721–2725CrossRefPubMedGoogle Scholar
  60. 60.
    Bizzarri C, Conte V, Floris B, Galloni P (2011) J Phys Org Chem 24:327–334CrossRefGoogle Scholar
  61. 61.
    Vojtěchovský J, Chu K, Berendzen J, Sweet RM, Schlichting I (1999) Biophys J 77:2153–2174CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Baran JD, Grönbeck H, Hellman A (2014) J Am Chem Soc 136:1320–1326CrossRefPubMedGoogle Scholar
  63. 63.
    Pramanik D, Dey SG (2011) J Am Chem Soc 133:81–87CrossRefPubMedGoogle Scholar
  64. 64.
    Jee J-E, Eigler S, Jux N, Zahl A, van Eldik R (2007) Inorg Chem 46:3336–3352CrossRefPubMedGoogle Scholar
  65. 65.
    Wilson SA, Kroll T, Decreau RA, Hocking RK, Lundberg M, Hedman B, Hodgson KO, Solomon EI (2013) J Am Chem Soc 135:1124–1136CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kepp KP, Dasmeh P (2013) J Phys Chem B 117:3755–3770CrossRefPubMedGoogle Scholar
  67. 67.
    Ohta T, Yoshimura H, Yoshioka S, Aono S, Kitagawa T (2004) J Am Chem Soc 126:15000–15001CrossRefPubMedGoogle Scholar
  68. 68.
    Cao R, Thapa R, Kim H, Xu X, Kim MG, Li Q, Park N, Liu M, Cho J (2013) Nat Commun 4:2076PubMedGoogle Scholar
  69. 69.
    Lehnert N, Ho RYN, Que L Jr, Solomon EI (2001) J Am Chem Soc 123:12802–12816CrossRefPubMedGoogle Scholar
  70. 70.
    Welborn CH, Dolphin D, James BR (1981) J Am Chem Soc 103:2869–2870CrossRefGoogle Scholar
  71. 71.
    Wertz DL, Valentine JS (2000) Struct Bonding (Berlin) 97:37–60CrossRefGoogle Scholar
  72. 72.
    Ly HK, Wrzolek P, Heidary N, Götz R, Horch M, Kozuch J, Schwalbe M, Weidinger IM (2015) Chem Sci 6:6999–7007CrossRefGoogle Scholar
  73. 73.
    Chatterjee S, Sengupta K, Samanta S, Das PK, Dey A (2015) Inorg Chem 54:2383–2392CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2016

Authors and Affiliations

  • Takehiro Ohta
    • 1
    • 4
    Email author
  • Perumandla Nagaraju
    • 2
    • 4
  • Jin-Gang Liu
    • 3
  • Takashi Ogura
    • 1
  • Yoshinori Naruta
    • 2
    • 4
  1. 1.Picobiology Institute, Graduate School of Life ScienceUniversity of Hyogo, RSC-UH LP CenterHyogoJapan
  2. 2.Institute of Science and Technology ResearchChubu UniversityKasugaiJapan
  3. 3.Department of ChemistryEast China University of Science and TechnologyShanghaiChina
  4. 4.Institute for Materials Chemistry and EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations