JBIC Journal of Biological Inorganic Chemistry

, Volume 21, Issue 5–6, pp 669–681 | Cite as

Resonance Raman spectroscopic study of the interaction between Co(II)rrinoids and the ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri

  • Kiyoung Park
  • Paola E. Mera
  • Jorge C. Escalante-Semerena
  • Thomas C. Brunold
Original Paper
Part of the following topical collections:
  1. E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry


The human-type ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri (LrPduO) catalyzes the adenosylation of Co(II)rrinoids to generate adenosylcobalamin (AdoCbl) or adenosylcobinamide (AdoCbi+). This process requires the formation of “supernucleophilic” Co(I)rrinoid intermediates in the enzyme active site which are properly positioned to abstract the adeonsyl moiety from co-substrate ATP. Previous magnetic circular dichroism (MCD) spectroscopic and X-ray crystallographic analyses revealed that LrPduO achieves the thermodynamically challenging reduction of Co(II)rrinoids by displacing the axial ligand with a non-coordinating phenylalanine residue to produce a four-coordinate species. However, relatively little is currently known about the interaction between the tetradentate equatorial ligand of Co(II)rrinoids (the corrin ring) and the enzyme active site. To address this issue, we have collected resonance Raman (rR) data of Co(II)rrinoids free in solution and bound to the LrPduO active site. The relevant resonance-enhanced vibrational features of the free Co(II)rrinoids are assigned on the basis of rR intensity calculations using density functional theory to establish a suitable framework for interpreting rR spectral changes that occur upon Co(II)rrinoid binding to the LrPduO/ATP complex in terms of structural perturbations of the corrin ring. To complement our rR data, we have also obtained MCD spectra of Co(II)rrinoids bound to LrPduO complexed with the ATP analogue UTP. Collectively, our results provide compelling evidence that in the LrPduO active site, the corrin ring of Co(II)rrinoids is firmly locked in place by several amino acid side chains so as to facilitate the dissociation of the axial ligand.


Resonance Raman spectroscopy Density functional theory ATP:corrinoid adenosyltransferase Adenosylcobalamin 



This work was supported in part by the National Science Foundation Grant MCB-0238530 (to T. C. B.), the National Institutes of Health Grant R37-GM40313 (to J. C. E.-S.), the National Research Foundation of Korea NRF-2015R1C1A1A02036917, and the Korea Institute of Science and Technology Information KSC-2015-C2-044 (to K. P.). P. E. M was supported in part by Chemical Biology Interface Training Grant T32-GM008505 (L. L. Kiessling, P. I.) from the National Institute of General Medical Sciences (NIGMS).

Supplementary material

775_2016_1371_MOESM1_ESM.pdf (230 kb)
Supplementary material 1 (PDF 230 kb)


  1. 1.
    Banerjee R, Ragsdale SW (2003) Annu Rev Biochem 72:209CrossRefPubMedGoogle Scholar
  2. 2.
    Bouquiere JP, Finney JL, Lehmann MS, Lindley PF, Savage HFJ (1993) Acta Crystallogr Sect B-Struct Commun 49:79CrossRefGoogle Scholar
  3. 3.
    Gerfen GJ, Licht S, Willems JP, Hoffman BM, Stubbe J (1996) J Am Chem Soc 118:8192CrossRefGoogle Scholar
  4. 4.
    Sintchak MD, Arjara G, Kellogg BA, Stubbe J, Drennan CL (2002) Nat Struct Mol Biol 9:293CrossRefGoogle Scholar
  5. 5.
    Crona M, Hofer A, Astorga-Wells J, Sjöberg B-M, Tholander F (2015) PLoS One 10:e0134293CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Marsh ENG, Ballou DP (1998) Biochemistry 37:11864CrossRefPubMedGoogle Scholar
  7. 7.
    Yoon M, Kalli A, Lee H-Y, Håkansson K, Marsh ENG (2007) Angew Chem Int Ed 46:8455CrossRefGoogle Scholar
  8. 8.
    Johnson CLV, Pechonick E, Park SD, Havemann GD, Leal NA, Bobik TA (2001) J Bacteriol 183:1577CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Toraya T (2000) Cell Mol Life Sci 57:106CrossRefPubMedGoogle Scholar
  10. 10.
    Wei XQ, Meng XL, Chen YL, Wei YT, Du LQ, Huang RB (2014) Biotechnol Lett 36:159CrossRefPubMedGoogle Scholar
  11. 11.
    Toraya T (2014) Arch Biochem Biophys 544:40CrossRefPubMedGoogle Scholar
  12. 12.
    Buan NR, Suh S-J, Escalante-Semerena JC (2004) J Bacteriol 186:5708CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Robertson WD, Wang M, Warncke K (2011) J Am Chem Soc 133:6968CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jones AR, Rentergent J, Scrutton NS, Hay S (2015) Chem Eur J 21:8826CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chowdhury S, Banerjee R (2000) Biochemistry 39:7998CrossRefPubMedGoogle Scholar
  16. 16.
    Yabuta Y, Kamei Y, Bito T, Arima J, Yoneda K, Sakuraba H, Ohshima T, Nakano Y, Watanabe F (2015) Biosci Biotechnol Biochem 79:710CrossRefPubMedGoogle Scholar
  17. 17.
    Conrad KS, Jordan CD, Brown KL, Brunold TC (2015) Inorg Chem 54:3736CrossRefPubMedGoogle Scholar
  18. 18.
    Larsson KM, Logan DT, Nordlund P (2010) ACS Chem Biol 5:933CrossRefPubMedGoogle Scholar
  19. 19.
    Banerjee R (2001) Biochemistry 40:123CrossRefGoogle Scholar
  20. 20.
    Marsh ENG, Patterson DP, Li L (2010) ChemBioChem 11:604CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Frey PA (2014) Acc Chem Res 47:540CrossRefPubMedGoogle Scholar
  22. 22.
    Dowling DP, Croft AK, Drennan CL (2012) Annu Rev Biophys 41:403CrossRefPubMedGoogle Scholar
  23. 23.
    Toraya T (2003) Chem Rev 103:2095CrossRefPubMedGoogle Scholar
  24. 24.
    Santos F, Vera JL, van der Heijden R, Valdez G, de Vos WM, Sesma F, Hugenholtz J (2008) Microbiology 154:81CrossRefPubMedGoogle Scholar
  25. 25.
    St. Maurice M, Mera P, Park K, Brunold TC, Escalante-Semerena JC, Rayment I (2008) Biochemistry 47:5755CrossRefGoogle Scholar
  26. 26.
    Lexa D, Saveant JM (1983) Acc Chem Res 16:235CrossRefGoogle Scholar
  27. 27.
    Sykes GA, Rogers LJ (1984) Biochem J 217:845CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mera PE, Escalante-Semerena JC (2010) J Biol Chem 285:2911CrossRefPubMedGoogle Scholar
  29. 29.
    Fonseca MV, Escalante-Semerena JC (2001) J Biol Chem 276:32101CrossRefPubMedGoogle Scholar
  30. 30.
    Moore TC, Mera PE, Escalante-Semerena JC (2014) J Bacteriol 196:903CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stich TA, Buan NR, Escalante-Semerena JC, Brunold TC (2005) J Am Chem Soc 127:8710CrossRefPubMedGoogle Scholar
  32. 32.
    Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC (2014) Biochemistry 53:7969CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stich TA, Yamanishi M, Banerjee R, Brunold TC (2005) J Am Chem Soc 127:7660CrossRefPubMedGoogle Scholar
  34. 34.
    Park K, Mera PE, Escalante-Semerena JC, Brunold TC (2008) Biochemistry 47:9007CrossRefPubMedGoogle Scholar
  35. 35.
    Park K, Mera PE, Moore TC, Escalante-Semerena JC, Brunold TC (2015) Angew Chem Int Ed 54:7158CrossRefGoogle Scholar
  36. 36.
    Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC (2016) J Am Chem Soc 138:3694CrossRefPubMedGoogle Scholar
  37. 37.
    Mera PE, StMaurice M, Rayment I, Escalante-Semerena JC (2007) Biochemistry 46:13829CrossRefPubMedGoogle Scholar
  38. 38.
    Park K, Mera PE, Escalante-Semerena JC, Brunold TC (2012) Inorg Chem 51:4482CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dong SL, Padmakumar R, Maiti N, Banerjee R, Spiro TG (1998) J Am Chem Soc 120:9947CrossRefGoogle Scholar
  40. 40.
    Dong SL, Padmakumar R, Banerjee R, Spiro TG (1999) J Am Chem Soc 121:7063CrossRefGoogle Scholar
  41. 41.
    Huhta MS, Chen HP, Hemann C, Hille CR, Marsh ENG (2001) Biochem J 355:131PubMedPubMedCentralGoogle Scholar
  42. 42.
    George WO (1973) Appl Spectrosc 27:390CrossRefGoogle Scholar
  43. 43.
    Mayer E, Gardiner DJ, Hester RE (1973) J Chem Soc Faraday Trans 69:1350CrossRefGoogle Scholar
  44. 44.
    Mayer E, Gardiner DJ, Hester RE (1973) Mol Phys 26:783CrossRefGoogle Scholar
  45. 45.
    Puckett JM, Mitchell MB, Hirota S, Marzilli LG (1996) Inorg Chem 35:4656CrossRefGoogle Scholar
  46. 46.
    Salama S, Spiro TG (1977) J Raman Spectrosc 6:57CrossRefGoogle Scholar
  47. 47.
    Andruniow T, Zgierski MZ, Kozlowski PM (2002) J Phys Chem A 106:1365CrossRefGoogle Scholar
  48. 48.
    Park K, Brunold TC (2013) J Phys Chem B 117:5397CrossRefPubMedGoogle Scholar
  49. 49.
    Stich TA, Buan NR, Brunold TC (2004) J Am Chem Soc 126:9735CrossRefPubMedGoogle Scholar
  50. 50.
    Hill H, Pratt J, Williams R (1965) J Chem Soc (Resumed) 2859Google Scholar
  51. 51.
    Chou IM, Blank JG, Goncharov AF, Mao HK, Hemley RJ (1998) Science 281:809CrossRefPubMedGoogle Scholar
  52. 52.
    Heyns AM, Range KJ, Muller K (1991) Can J Chem Revue Canadienne De Chimie 69:1774CrossRefGoogle Scholar
  53. 53.
    Krautler B, Keller W, Kratky C (1989) J Am Chem Soc 111:8936CrossRefGoogle Scholar
  54. 54.
    Liptak MD, Brunold TC (2006) J Am Chem Soc 128:9144CrossRefPubMedGoogle Scholar
  55. 55.
    ADF2006.01; SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Accessed 9 Apr 2016
  56. 56.
    Berces A, Dickson RM, Fan LY, Jacobsen H, Swerhone D, Ziegler T (1997) Comput Phys Commun 100:247CrossRefGoogle Scholar
  57. 57.
    Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Theoret Chem Acc 99:391Google Scholar
  58. 58.
    Jacobsen H, Berces A, Swerhone DP, Ziegler T (1997) Comput Phys Commun 100:263CrossRefGoogle Scholar
  59. 59.
    Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931CrossRefGoogle Scholar
  60. 60.
    Wolff SK (2005) Int J Quantum Chem 104:645CrossRefGoogle Scholar
  61. 61.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200CrossRefGoogle Scholar
  62. 62.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefPubMedGoogle Scholar
  63. 63.
    Jmol: an open-source Java viewer for chemical structures in 3D. Accessed 30 Mar 2016
  64. 64.
    Neese F (2007) 2.6 revision 4 ed. Institut fuer Physikalische und Theoretische Chemie. Universitaet BonnGoogle Scholar
  65. 65.
    Baerends E, Ellis D, Ros P (1973) Chem Phys 2:41CrossRefGoogle Scholar
  66. 66.
    Dunlap BI, Connolly J, Sabin J (1979) J Chem Phys 71:3396CrossRefGoogle Scholar
  67. 67.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283CrossRefGoogle Scholar
  68. 68.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theoret Chem Acc 97:119CrossRefGoogle Scholar
  69. 69.
    Kendall RA, Früchtl HA (1997) Theoret Chem Acc 97:158CrossRefGoogle Scholar
  70. 70.
    Van Alsenoy C (1988) J Comput Chem 9:620CrossRefGoogle Scholar
  71. 71.
    Whitten JL (1973) J Chem Phys 58:4496CrossRefGoogle Scholar
  72. 72.
    Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem Revue Canadienne De Chimie 70:560CrossRefGoogle Scholar
  73. 73.
    Schafer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571CrossRefGoogle Scholar
  74. 74.
    Hirata S, Head-Gordon M (1999) Chem Phys Lett 314:291CrossRefGoogle Scholar
  75. 75.
    Bergman DL, Laaksonen L, Laaksonen A (1997) J Mol Graph Model 15:301CrossRefPubMedGoogle Scholar
  76. 76.
    Laaksonen L (1992) J Mol Graph 10:33CrossRefPubMedGoogle Scholar
  77. 77.
    Laaksonen L (2005) gOpenMol version 3.0. Center for scientific computing. Espoo, FinlandGoogle Scholar
  78. 78.
    Neese F, Petrenko T, Ganyushin D, Olbrich G (2007) Coord Chem Rev 251:288CrossRefGoogle Scholar
  79. 79.
    Shorygin PP (1952) Docl Akad Nauk SSSR 87:201Google Scholar
  80. 80.
    Shorygin PP (1953) Docl Akad Nauk SSSR Ser Fiz 17:58Google Scholar

Copyright information

© SBIC 2016

Authors and Affiliations

  1. 1.Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Department of Chemistry and BiochemistryNew Mexico State UniversityLas CrucesUSA
  3. 3.Department of MicrobiologyUniversity of GeorgiaAthensUSA
  4. 4.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations