JBIC Journal of Biological Inorganic Chemistry

, Volume 21, Issue 5–6, pp 729–743 | Cite as

Isocyanide or nitrosyl complexation to hemes with varying tethered axial base ligand donors: synthesis and characterization

  • Savita K. Sharma
  • Hyun Kim
  • Patrick J. Rogler
  • Maxime A. Siegler
  • Kenneth D. KarlinEmail author
Original Paper
Part of the following topical collections:
  1. E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry


A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)FeII], [(PPy)FeII], [(PIm)FeII], and [(PImH)FeII], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and PPy, PIm, and PImH are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; PImH is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)FeII-(DIMPI)2] in the case of [(F8)FeII], while for the other hemes, mono-DIMPI compounds are obtained, [(PPy)FeII-(DIMPI)] [(2)-DIMPI], [(PIm)FeII-(DIMPI)] [(3)-DIMPI], and [(PImH)FeII-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. 19F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)FeII-(NO)], or low-spin six-coordinate compounds [(PPy)FeII-(NO)], [(PIm)FeII-(NO)], and [(PImH)FeII-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV–Vis, IR, 1H-NMR, and EPR spectroscopies.

Graphical abstract


Ferrous heme Heme isocyanide X-ray structures Heme nitrosyl H…F(porphyrinate) interactions 



This work was supported by the National Institutes of Health (R01 GM 060353 to K.D.K).

Supplementary material

775_2016_1369_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1191 kb)


  1. 1.
    Ghosh A (ed) (2008) The smallest biomolecules: diatomics and their interactions with heme proteins. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Zhu Y, Silverman RB (2008) Biochemistry 47:2231–2243CrossRefPubMedGoogle Scholar
  3. 3.
    Aono S (2008) Dalton Trans 3137–3146Google Scholar
  4. 4.
    Ohta T, Kitagawa T (2005) Inorg Chem 44:758–769CrossRefPubMedGoogle Scholar
  5. 5.
    De Montellano PRO (2005) Cytochrome P-450: structure, mechanism, and biochemistry. SpringerGoogle Scholar
  6. 6.
    Walker FA (2005) J Inorg Biochem 99:216–236CrossRefPubMedGoogle Scholar
  7. 7.
    Zhao Y, Brandish PE, Ballou DP, Marletta MA (1999) Proc Natl Acad Sci USA 96:14753–14758CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Poulos TL (2006) Curr Opin Struct Biol 16:736–743CrossRefPubMedGoogle Scholar
  9. 9.
    Ford PC, Bandyopadhyay S, Lim MD, Lorkovic IM (2008) The smallest biomolecules: diatomics and their interactions with heme proteins. In: Ghosh A (ed) Elsevier, Amsterdam, pp 66–91Google Scholar
  10. 10.
    Tennyson AG, Lippard SJ (2011) Chem Biol 18:1211–1220CrossRefPubMedGoogle Scholar
  11. 11.
    Traylor TG, Sharma VS (1992) Biochemistry 31:2847–2849CrossRefPubMedGoogle Scholar
  12. 12.
    Schopfer MP, Wang J, Karlin KD (2010) Inorg Chem 49:6267–6282CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Toledo JC Jr, Augusto O (2012) Chem Res Toxicol 25:975–989CrossRefPubMedGoogle Scholar
  14. 14.
    Hunt AP, Lehnert N (2015) Acc Chem Res 48:2117–2125CrossRefPubMedGoogle Scholar
  15. 15.
    Wilks A, Ikeda-Saito M (2014) Acc Chem Res 47:2291–2298CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Matsui T, Unno M, Ikeda-Saito M (2010) Acc Chem Res 43:240–247CrossRefPubMedGoogle Scholar
  17. 17.
    Schuller DJ, Wilks A, De Montellano PRO, Poulos TL (1999) Nat Struct Biol 6:860–867CrossRefPubMedGoogle Scholar
  18. 18.
    Watkins CC, Boehning D, Kaplin AI, Rao M, Ferris CD, Snyder SH (2004) Proc Natl Acad Sci USA 101:2631–2635CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Larsen RW, Mikšovská J (2007) Coord Chem Rev 251:1101–1127CrossRefGoogle Scholar
  20. 20.
    Vos MH (2008) Biochim Biophys Acta 1777:15–31CrossRefPubMedGoogle Scholar
  21. 21.
    Spiro TG, Soldatova AV, Balakrishnan G (2013) Coord Chem Rev 257:511–527CrossRefPubMedGoogle Scholar
  22. 22.
    Vos MH, Liebl U (2015) Biochim Biophys Acta 1847:79–85CrossRefPubMedGoogle Scholar
  23. 23.
    Liebl U, Lambry JC, Vos MH (2013) Biochim Biophys Acta 1834:1684–1692CrossRefPubMedGoogle Scholar
  24. 24.
    Spiro TG, Wasbotten IH (2005) J Inorg Biochem 99:34–44CrossRefPubMedGoogle Scholar
  25. 25.
    Bandyopadhyay D, Walda KN, Grogan TM, Magde D, Traylor TG, Sharma VS (1996) Biochemistry 35:1500–1505CrossRefPubMedGoogle Scholar
  26. 26.
    Derbyshire ER, Marletta MA (2007) J Biol Chem 282:35741–35748CrossRefPubMedGoogle Scholar
  27. 27.
    Evans JP, Kandel S, De Montellano PRO (2009) Biochemistry 48:8920–8928CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lucas HR, Karlin KD (2009) Metal Ions Life Sci 6:295–361CrossRefGoogle Scholar
  29. 29.
    Blouin GC, Schweers RL, Olson JS (2010) Biochemistry 49:4987–4997CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Blouin GC, Olson JS (2010) Biochemistry 49:4968–4976CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hematian S, Garcia-Bosch I, Karlin KD (2015) Acc Chem Res 48:2462–2474CrossRefPubMedGoogle Scholar
  32. 32.
    Kim E, Helton ME, Wasser IM, Karlin KD, Lu S, Huang H-W, Moenne-Loccoz P, Incarvito CD, Rheingold AL, Honecker M, Kaderli S, Zuberbühler AD (2003) Proc Natl Acad Sci USA 100:3623–3628CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Halime Z, Kieber-Emmons MT, Qayyum MF, Mondal B, Gandhi T, Puiu SC, Chufan EE, Sarjeant AAN, Hodgson KO, Hedman B, Solomon EI, Karlin KD (2010) Inorg Chem 49:3629–3645CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Halime Z, Kotani H, Li Y, Fukuzumi S, Karlin KD (2011) Proc Natl Acad Sci USA 108:13990–13994CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson KO, Hedman B, Karlin KD, Solomon EI (2012) Angew Chem Int Ed 51:168–172CrossRefGoogle Scholar
  36. 36.
    Garcia-Bosch I, Adam SM, Schaefer AW, Sharma SK, Peterson RL, Solomon EI, Karlin KD (2015) J Am Chem Soc 137:1032–1035CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li Y, Sharma SK, Karlin KD (2013) Polyhedron 58:190–196CrossRefGoogle Scholar
  38. 38.
    Sharma SK, Rogler PJ, Karlin KD (2015) J Porphyrins Phthalocyanines 19:352–360CrossRefGoogle Scholar
  39. 39.
    Schopfer MP, Mondal B, Lee D-H, Sarjeant AAN, Karlin KD (2009) J Am Chem Soc 131:11304–11305CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chufan EE, Puiu SC, Karlin KD (2007) Acc Chem Res 40:563–572CrossRefPubMedGoogle Scholar
  41. 41.
    Ghiladi RA, Kretzer RM, Guzei I, Rheingold AL, Neuhold Y-M, Hatwell KR, Zuberbühler AD, Karlin KD (2001) Inorg Chem 40:5754–5767CrossRefPubMedGoogle Scholar
  42. 42.
    Garcia-Bosch I, Sharma SK, Karlin KD (2013) J Am Chem Soc 135:16248–16251CrossRefPubMedGoogle Scholar
  43. 43.
    Kim E, Shearer J, Lu S, Moeenne-Loccoz P, Helton ME, Kaderli S, Zuberbühler AD, Karlin KD (2004) J Am Chem Soc 126:12716–12717CrossRefPubMedGoogle Scholar
  44. 44.
    Kamaraj K, Kim E, Galliker B, Zakharov LN, Rheingold AL, Zuberbühler AD, Karlin KD (2003) J Am Chem Soc 125:6028–6029CrossRefPubMedGoogle Scholar
  45. 45.
    Wang J, Schopfer MP, Puiu SC, Sarjeant AAN, Karlin KD (2010) Inorg Chem 49:1404–1419CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Berto TC, Praneeth VKK, Goodrich LE, Lehnert N (2009) J Am Chem Soc 131:17116–17126CrossRefPubMedGoogle Scholar
  47. 47.
    Spek A (2009) Acta Crystallogr Sect D 65:148–155CrossRefGoogle Scholar
  48. 48.
    Jameson GB, Ibers JA (1979) Inorg Chem 18:1200–1208CrossRefGoogle Scholar
  49. 49.
    Kretzer RM, Ghiladi RA, Lebeau EL, Liang H-C, Karlin KD (2003) Inorg Chem 42:3016–3025CrossRefPubMedGoogle Scholar
  50. 50.
    Song B, Yu B-S (2003) Bull Korean Chem Soc 24:981–985Google Scholar
  51. 51.
    Wood MA, Dickinson K, Willey GR, Dodd GH (1987) Biochem J 247:675–678CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    A reviewer suggested the bending may be due to a pseudo Jahn-Teller effect arising from a slight weakening of the Fe-N5(imidazole) bond in (3)-DIMPI compared to that in (4)-DIMPI (see Table 2); see Kitagawa T et al. (2005) J Phys Chem B 109: 21110-21117Google Scholar
  53. 53.
    Thompson DW, Kretzer RM, Lebeau EL, Scaltrito DV, Ghiladi RA, Lam K-C, Rheingold AL, Karlin KD, Meyer GJ (2003) Inorg Chem 42:5211–5218CrossRefPubMedGoogle Scholar
  54. 54.
    Pauling L (1932) J Am Chem Soc 54:3570–3582CrossRefGoogle Scholar
  55. 55.
    Shimoni L, Glusker JP (2015) In: Hargittai I, Hargittai B (eds) Science of crystal structures: highlights in crystallography. Springer International Publishing, Cham, pp 187–203CrossRefGoogle Scholar
  56. 56.
    Kryachko E, Scheiner S (2004) J Phys Chem A 108:2527–2535CrossRefGoogle Scholar
  57. 57.
    Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L (2003) Science 299:1037–1039CrossRefPubMedGoogle Scholar
  58. 58.
    England J, Guo Y, Farquhar ER, Young VG, Münck E, Que L (2010) J Am Chem Soc 132:8635–8644CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    As suggested by a reviewer, the room-temperature molecular structures for (3)-DIMPI and (4)-DIMPI may be dynamic with respect to Fe-C-N bending; the IR band observed for these complexes do seem to be asymmetric, and composed of two bands, possibly two conformersGoogle Scholar
  60. 60.
    Lehnert N, Scheidt WR, Wolf MW (2014) In: Mingos DMP (ed) Nitrosyl complexes in inorganic chemistry, biochemistry and medicine ii. Springer, New York, pp 155–223Google Scholar
  61. 61.
    Hayes RG, Ellison MK, Scheidt WR (2000) Inorg Chem 39:3665–3668CrossRefPubMedGoogle Scholar
  62. 62.
    Wasser IM, Huang H-W, Moeenne-Loccoz P, Karlin KD (2005) J Am Chem Soc 127:3310–3320CrossRefPubMedGoogle Scholar
  63. 63.
    Praneeth VKK, Neese F, Lehnert N (2005) Inorg Chem 44:2570–2572CrossRefPubMedGoogle Scholar
  64. 64.
    Scheidt WR, Brinegar AC, Ferro EB, Kirner JF (1977) J Am Chem Soc 99:7315–7322CrossRefGoogle Scholar

Copyright information

© SBIC 2016

Authors and Affiliations

  • Savita K. Sharma
    • 1
  • Hyun Kim
    • 1
  • Patrick J. Rogler
    • 1
  • Maxime A. Siegler
    • 1
  • Kenneth D. Karlin
    • 1
    Email author
  1. 1.Department of ChemistryThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations