JBIC Journal of Biological Inorganic Chemistry

, Volume 21, Issue 5–6, pp 757–775 | Cite as

Distorted tetrahedral nickel-nitrosyl complexes: spectroscopic characterization and electronic structure

  • Shoko Soma
  • Casey Van Stappen
  • Mercedesz Kiss
  • Robert K. SzilagyiEmail author
  • Nicolai LehnertEmail author
  • Kiyoshi FujisawaEmail author
Original Paper
Part of the following topical collections:
  1. E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry


The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV–Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni II (NO )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni II (NO )(X)(PPh 3 ) 2 ] ground state.


Nickel Nitrosyl X-ray structure X-ray absorption DFT calculations 



Broken symmetry


Cyclic voltammetry


Density functional theory


Diffuse reflectance




Hydrotris(3-tertiary butyl-imidazol-2-ylidene)borate




Hydrotris(3-p-tertiary butyl-phenyl-1,3,5-triazol-2-ylidene)borate


Hydrotris(3,5-diisopropyl-1-pyrazolyl)borate)borate anion


Hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate anion


Magnetic circular dichroism




Time-dependent DFT


Tetrabutylammonium perchlorate














X-ray absorption spectroscopy


X-ray absorption near-edge structure analysis


Fluorescence-yield detection for the K-edge ionization energy range


Electron yield detection for the L-edge ionization energy range



We are grateful for the support from the Japan Society for the Promotion of Science (JSPS) (K.F. 25109505) and the Iwatani Naoji Foundation’s Research Grant. The MTA-ELTE Chemical Structure & Function “Momentum” Laboratory (ID 96122) is supported by the Hungarian Academy of Sciences, Budapest, Hungary (Contract No. LP2015-10/2015 for R.K.Sz.). N.L. acknowledges support for this work from the National Science Foundation (CHE-1305777). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. We further acknowledge Mr. M. Kawai and Mr. T. Yamaguchi of Ibaraki University for assistance with data collections at SLAC and Prof. Kenji Hara and Prof. Tetsuo Honma for the setup of the autosampler and assistance at Spring-8.

Supplementary material

775_2016_1366_MOESM1_ESM.pdf (949 kb)
Supplementary material 1 (PDF 949 kb)
775_2016_1366_MOESM2_ESM.txt (209 kb)
Supplementary material 2 (TXT 210 kb)


  1. 1.
    Ignarro L (2000) Nitric oxide: biology and pathobiology. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Culotta E, Koshland DE Jr (1992) Science 258:1862–1865CrossRefPubMedGoogle Scholar
  3. 3.
    Furchgott RF (1999) Angew Chem Int Ed 38:1870–1880CrossRefGoogle Scholar
  4. 4.
    Ignarro LJ (1999) Angew Chem Int Ed 38:1882–1892CrossRefGoogle Scholar
  5. 5.
    Murad F (1999) Angew Chem Int Ed 38:1856–1868CrossRefGoogle Scholar
  6. 6.
    Enemark JH, Feltham RD (1974) Coord Chem Rev 13:339–406CrossRefGoogle Scholar
  7. 7.
    Bottomley F (1978) Acc Chem Res 11:158–163CrossRefGoogle Scholar
  8. 8.
    Cheng L, Richter-Addo GB (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic, New York, pp 219–291Google Scholar
  9. 9.
    Ford PC, Lorkovic IM (2002) Chem Rev 102:993–1017CrossRefPubMedGoogle Scholar
  10. 10.
    Hayton TW, Legzdins P, Sharp WB (2002) Chem Rev 102:935–991CrossRefPubMedGoogle Scholar
  11. 11.
    Wyllie GRA, Scheidt WR (2002) Chem Rev 102:1067–1089CrossRefPubMedGoogle Scholar
  12. 12.
    Wasser IM, de Vries S, Moënne-Loccoz P, Schröder I, Karlin KD (2002) Chem Rev 102:1201–1234CrossRefPubMedGoogle Scholar
  13. 13.
    Tfouni E, Krieger M, McGarvey BR, Franco DW (2003) Coord Chem Rev 236:57–69CrossRefGoogle Scholar
  14. 14.
    McCleverty JA (2004) Chem Rev 104:403–418CrossRefPubMedGoogle Scholar
  15. 15.
    Lee DH, Mondal B, Karlin KD (2006) In: Tolman WB (ed) Activation of small molecules. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  16. 16.
    Franke A, Roncaroli F, van Eldik R (2007) Eur J Inorg Chem 2007:773–798CrossRefGoogle Scholar
  17. 17.
    Roncaroli F, Videla M, Slep LD, Olabe JA (2007) Coord Chem Rev 251:1903–1930CrossRefGoogle Scholar
  18. 18.
    Rose MJ, Mascharak PK (2008) Coord Chem Rev 252:2093–2114CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lehnert N, Berto T, Galinato MGI, Goodrich LE (2011) In: Kadish KM, Smith KM, Guilard R (eds) The handbook of porphyrin science. World Scientific, Hackensack, vol 14, pp 1–247Google Scholar
  20. 20.
    Berto T, Speelman AL, Zheng S, Lehnert N (2013) Coord Chem Rev 257:244–259CrossRefGoogle Scholar
  21. 21.
    Wright AM, Hayton TW (2013) Comments Inorg Chem 33:207–248CrossRefGoogle Scholar
  22. 22.
    Lehnert N, Scheidt WR, Wolf MW (2014) Struct Bond (Berlin, Germany) 154:155–224Google Scholar
  23. 23.
    Nakamoto K (2009) Infrared and raman spectra of inorganic and coordination compound, 6th edn. Wiley, New JerseyGoogle Scholar
  24. 24.
    Praneeth VKK, Näther C, Peters G, Lehnert N (2006) Inorg Chem 45:2795–2811CrossRefPubMedGoogle Scholar
  25. 25.
    Berto TC, Praneeth VKK, Goodrich LE, Lehnert N (2009) J Am Chem Soc 131:17116–17126CrossRefPubMedGoogle Scholar
  26. 26.
    Hunt AP, Lehnert N (2015) Acc Chem Res 48:2117–2125CrossRefPubMedGoogle Scholar
  27. 27.
    Kaim W, Schwederski B (2010) Coord Chem Rev 254:1580–1588CrossRefGoogle Scholar
  28. 28.
    Kitajima K, Fujisawa K, Fujimoto C, Moro-oka Y, Hashimoto S, Kitagawa T, Toriumi K, Tatsumi K, Nakamura A (1992) J Am Chem Soc 114:1277–1291CrossRefGoogle Scholar
  29. 29.
    Fujisawa K, Tanaka M, Moro-oka Y, Kitajima N (1994) J Am Chem Soc 116:12079–12080CrossRefGoogle Scholar
  30. 30.
    Fujisawa K, Tateda A, Miyashita Y, Okamoto K, Paulat F, Praneeth VNN, Merkle A, Lehnert N (2008) J Am Chem Soc 130:1205–1213CrossRefPubMedGoogle Scholar
  31. 31.
    Merkle AC, Lehnert N (2012) Dalton Trans 41:3355–3368CrossRefPubMedGoogle Scholar
  32. 32.
    Landry VK, Pang K, Quan SM, Parkin G (2007) Dalton Trans 2007:820–824CrossRefGoogle Scholar
  33. 33.
    Tomson NC, Crimmin MR, Petrenko T, Rosebrugh LE, Sproules S, Boyd WC, Bergman RG, DeBeer S, Toste FD, Wieghardt K (2011) J Am Chem Soc 133:18785–18801CrossRefPubMedGoogle Scholar
  34. 34.
    Feltham RD (1964) Inorg Chem 3:116–119CrossRefGoogle Scholar
  35. 35.
    Enemark JH (1971) Inorg Chem 10:1952–1957CrossRefGoogle Scholar
  36. 36.
    Haller KJ, Enemark JH (1978) Inorg Chem 17:3552–3558CrossRefGoogle Scholar
  37. 37.
    Armarego WLF, Chai CLL (2012) Purification of laboratory chemicals, 7th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  38. 38.
    Imai S, Fujisawa K, Kobayashi T, Shirasawa N, Fujii H, Yoshimura T, Kitajima N, Moro-oka Y (1998) Inorg Chem 37:3066–3070CrossRefGoogle Scholar
  39. 39.
    Helmholz L, Kruh RF (1952) J Am Chem Soc 74:1176–1181CrossRefGoogle Scholar
  40. 40.
    Nabika M, Seki Y, Miyatake T, Ishikawa Y, Okamoto K, Fujisawa K (2004) Organometallics 23:4335–4337CrossRefGoogle Scholar
  41. 41.
    Thompson AC, Attwood DT, Gullikson EM, Howells MR, Kortright JB, Robinson AL, Underwood JH, Kim KJ, Kirz J, Lindau I, Pianetta P, Winick H, Williams GP, Scofield JH (2001) X-ray data booklet, center for x-ray optics. Advanced light source. Lawrence Berkeley National Laboratory, University of California, Berkeley, pp. 1-1–1-7Google Scholar
  42. 42.
    Oji H, Taniguchi Y, Hirayama S, Ofuchi H, Takagakia M, Honma T (2012) J Synchrotron Rad 19:54–59CrossRefGoogle Scholar
  43. 43.
    Gardenghi DJ (2011) Automated data reduction protocol, Montana State University, Bozeman.
  44. 44.
    Giles LJ, Grigoropoulos A, Szilagyi RK (2012) J Phys Chem A 116:12280–12298CrossRefPubMedGoogle Scholar
  45. 45.
    Barton RL, Gardenghi DJ, Stolte WC, Szilagyi RK (2015) J Phys Chem A 119:5579–5586CrossRefPubMedGoogle Scholar
  46. 46.
    Connelly NG, Geiger WE (1996) Chem Rev 96:877–910CrossRefPubMedGoogle Scholar
  47. 47.
    Hockley R, Irshad H, Sheriff TS, Motevalli M, Marinakis S (2015) Acta Crystallogr E71:m87–m88Google Scholar
  48. 48.
    CrystalClear (1998–2014) Data collection and processing software, Rigaku Corporation, TokyoGoogle Scholar
  49. 49.
    Altomare A, Cascarano G, Giacovazzo C, Guagliardi A (1993) J Appl Crystallogr 26:343–350CrossRefGoogle Scholar
  50. 50.
    Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Crystallogr 32:115–119CrossRefGoogle Scholar
  51. 51.
    Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Siliqi D, Spagna R (2007) J Appl Crystallogr 40:609–613CrossRefGoogle Scholar
  52. 52.
    CrystalStructure4.1 (2000–2014) Crystal structure analysis package, Rigaku Corporation, TokyoGoogle Scholar
  53. 53.
    Sheldrick GM (2008) Acta Crystallogr A64:112–122CrossRefGoogle Scholar
  54. 54.
    Parsons S, Flack H (2004) Acta Crystallogr A60:s61CrossRefGoogle Scholar
  55. 55.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  56. 56.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  57. 57.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  58. 58.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  59. 59.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefPubMedGoogle Scholar
  60. 60.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  61. 61.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101CrossRefPubMedGoogle Scholar
  62. 62.
    Attia A, Silaghi-Dumitrescu R (2014) Eur J Inorg Chem 2014:6061–6065CrossRefGoogle Scholar
  63. 63.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  64. 64.
    Weigend F, Ahlrichs A (2005) Phys Chem Chem Phys 7:3297–3305CrossRefPubMedGoogle Scholar
  65. 65.
    Neese F, Wennmohs F, Becker U, Bykov D, Ganyushin D, Hansen A, Izsák R, Liakos DA, Kollmar C, Kossmann S, Pantais DA, Petrenko T, Reimann C, Riplinger C, Roemelt M, Sandhöfer B, Schapiro I, Sivalingam K, Wezisla B (2013) Orca version 3.0 quantum computing package. Max-Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, GermanyGoogle Scholar
  66. 66.
    Tenderholt AL QmForge: a program to analyze quantum chemistry calculations.
  67. 67.
    te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  68. 68.
    Desrochers PJ, LeLievre S, Johnson RJ, Lamb BT, Phelps AL, Cordes AW, Gu W, Cramer SP (2003) Inorg Chem 42:7945–7950CrossRefPubMedGoogle Scholar
  69. 69.
    Chattopadhyay S, Deb T, Ma H, Petersen JL, Young VG Jr, Jensen MP (2008) Inorg Chem 47:3384–3392CrossRefPubMedGoogle Scholar
  70. 70.
    Matsunaga Y, Fujisawa K, Miyashita Y, Okamoto K (2005) Inorg Chem 44:325–335CrossRefPubMedGoogle Scholar
  71. 71.
    Kitajiama N, Fujisawa K, Moro-oka Y (1990) J Am Chem Soc 112:3210–3212CrossRefGoogle Scholar
  72. 72.
    Fujisawa K, Tada N, Ishikawa Y, Higashimura H, Miyashita Y, Okamoto K (2004) Inorg Chem Commun 7:209–212CrossRefGoogle Scholar
  73. 73.
    Maffett LS, Gunter KL, Kreisel KA, Yap GPA, Pabinovich D (2007) Polyhedron 26:4758–4764CrossRefGoogle Scholar
  74. 74.
    Muñoz SBIII, Foster WK, Lin HJ, Margarit CG, Dickie DA, Smith JM (2012) Inorg Chem 51:12660–12668Google Scholar
  75. 75.
    Nieto I, Bontchev R, Ozarowski A, Smirnov D, Krzystek J, Telser J, Smith J (2009) Inorg Chim Acta 362:4449–4460CrossRefGoogle Scholar
  76. 76.
    Goodrich LE, Paulat F, Praneeth VKK, Lehnert N (2010) Inorg Chem 49:6293–6316CrossRefPubMedGoogle Scholar
  77. 77.
    Harding DJ, Harding P, Adams H, Tuntulani T (2007) Inorg Chim Acta 360:3335–3340CrossRefGoogle Scholar
  78. 78.
    Fujisawa K, Ono T, Ishikawa Y, Nagina A, Miyashita Y, Okamoto K, Lehnert N (2006) Inorg Chem 45:1698–1713CrossRefPubMedGoogle Scholar
  79. 79.
    Desrochers PJ, Telser J, Zvyagin SA, Ozarowski A, Krzystek J, Vicic DA (2006) Inorg Chem 45:8930–8941CrossRefPubMedGoogle Scholar
  80. 80.
    Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier Science Publishing Co., Inc., New York Google Scholar
  81. 81.
    Gorelsky SJ, Basumallick L, Vura-Weis J, Sarangi R, Hodgson KO, B Hedman, Fujisawa K, Solomon EI (2005) Inorg Chem 44:4947–4960Google Scholar
  82. 82.
    Ye S, Nesse F (2012) J Chem Theory Comput 8:2344–2351CrossRefPubMedGoogle Scholar
  83. 83.
    Fujisawa K, Kakizaki T, Miyashita Y, Okamoto K (2008) Inorg Chim Acta 361:1134–1141CrossRefGoogle Scholar
  84. 84.
    Ming L-J (2000) In: Que L Jr (ed) Physical methods in bioinorganic chemistry: spectroscopy and magnetism. University Science Book, SausalitoGoogle Scholar
  85. 85.
    Yang L, Powell DR, Houser RP (2007) Dalton Trans 2007:955–964CrossRefGoogle Scholar
  86. 86.
    van Elp J, Peng G, Searle BG, Mitra-Kirtley S, Huang YH, Johnson MK, Zhou ZH, Adams MWW, Maroney MJ, Cramer SP (1994) J Am Chem Soc 116:1918–1923CrossRefGoogle Scholar
  87. 87.
    Hedman B, Hodgson KO, Solomon EI (1990) J Am Chem Soc 112:1643–1645CrossRefGoogle Scholar
  88. 88.
    Gewirth AA, Cohen SL, Schugar HJ, Solomon EI (1987) Inorg Chem 26:1133–1146CrossRefGoogle Scholar
  89. 89.
    Didziulis SV, Cohen SL, Gewirth AA, Solomon EI (1988) J Am Chem Soc 110:250–268CrossRefGoogle Scholar
  90. 90.
    Donahue CM, McCollom SP, Forrest CM, Blake AV, Bellott BJ, Keith JK, Daly SR (2015) Inorg Chem 54:5646–5659CrossRefPubMedGoogle Scholar
  91. 91.
    Queen MS, Towey BD, Murray KA, Veldkamp BS, Byker HJ, Szilagyi RK (2013) Coord Chem Rev 257:564–578CrossRefGoogle Scholar
  92. 92.
    Haav K, Saame J, Kütt A, Leito I (2012) Eur J Org Chem 2012:2167–2172CrossRefGoogle Scholar
  93. 93.
    Guillemoles JF, Barone V, Joubert L, Adamo C (2002) J Phys Chem A 106:11354–11360CrossRefGoogle Scholar
  94. 94.
    Praneeth VKK, Paulat F, Berto TC, George SD, Näther C, Sulok CD, Lehnert N (2008) J Am Chem Soc 130:15288–15303CrossRefPubMedGoogle Scholar
  95. 95.
    Hopmann KH, Noodleman L, Ghosh A (2010) Chem Eur J 16:10397–10408CrossRefPubMedGoogle Scholar
  96. 96.
    Berto TC, Hoffman MB, Murata Y, Landenberger KB, Alp EE, Zhao J, Lehnert N (2011) J Am Chem Soc 133:16714–16717CrossRefPubMedGoogle Scholar
  97. 97.
    Brown CA, Pavlosky MA, Westre TE, Zhang Y, Hedman B, Hodgson KO, Solomon EI (1995) J Am Chem Soc 117:715–732CrossRefGoogle Scholar
  98. 98.
    Speelman AL, Lehnert N (2013) Angew Chem Int Ed 52:12283–12287CrossRefGoogle Scholar
  99. 99.
    DeBeer-George S, Petrenko T, Neese F (2008) J Phys Chem A 112:12936–12943CrossRefPubMedGoogle Scholar
  100. 100.
    Roemelt M, Beckwith MA, Duboc C, Collomb MN, Neese F, DeBeer S (2012) Inorg Chem 51:680–687CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2016

Authors and Affiliations

  1. 1.Department of ChemistryIbaraki UniversityMitoJapan
  2. 2.Department of Chemistry and Department of BiophysicsUniversity of MichiganAnn ArborUSA
  3. 3.Max Planck Institute for Chemical Energy ConversionMülheim an der RuhrGermany
  4. 4.MTA-ELTE Chemical Structure & Function “Momentum” LaboratoryBudapestHungary
  5. 5.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA

Personalised recommendations