Influence of cysteine 164 on active site structure in rat cysteine dioxygenase

  • Matthias Fellner
  • Eleni Siakkou
  • Abayomi S. Faponle
  • Egor P. Tchesnokov
  • Sam P. de Visser
  • Sigurd M. Wilbanks
  • Guy N. L. Jameson
Original Paper

Abstract

Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate l-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine–tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding.

Keywords

Water binding Posttranslational modification ES coordination Kinetics DFT 

Abbreviations

CDO

Cysteine dioxygenase

CSA

Cysteine sulfinic acid

Supplementary material

775_2016_1360_MOESM1_ESM.pdf (89 kb)
Coordinates used for computational calculations

References

  1. 1.
    Dominy JE Jr, Simmons CR, Hirschberger LL, Hwang J, Coloso RM, Stipanuk MH (2007) J Biol Chem 282:25189–25198CrossRefPubMedGoogle Scholar
  2. 2.
    Bruland N, Wubbeler JH, Steinbuchel A (2009) J Biol Chem 284:660–672CrossRefPubMedGoogle Scholar
  3. 3.
    Tchesnokov EP, Fellner M, Siakkou E, Kleffmann T, Martin LW, Aloi S, Lamont IL, Wilbanks SM, Jameson GNL (2015) J Biol Chem 290:24424–24437CrossRefPubMedGoogle Scholar
  4. 4.
    Fellner M, Aloi S, Tchesnokov EP, Wilbanks SM, Jameson GNL (2016) Biochemistry 55:1362–1371CrossRefPubMedGoogle Scholar
  5. 5.
    Pierce BS, Subedi BP, Sardar S, Crowell JK (2015) Biochemistry 54:7477–7490CrossRefPubMedGoogle Scholar
  6. 6.
    Brandt U, Schurmann M, Steinbuchel A (2014) J Biol Chem 289:30800–30809CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jameson GNL (2011) Monatsh Chem 142:325–329CrossRefGoogle Scholar
  8. 8.
    Brait M, Ling S, Nagpal JK, Chang X, Park HL, Lee J, Okamura J, Yamashita K, Sidransky D, Kim MS (2012) PLoS One 7:e44951CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dietrich D, Krispin M, Dietrich J, Fassbender A, Lewin J, Harbeck N, Schmitt M, Eppenberger-Castori S, Vuaroqueaux V, Spyratos F, Foekens JA, Lesche R, Martens JW (2010) BMC Cancer 10:247CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dominy JE Jr, Simmons CR, Karplus PA, Gehring AM, Stipanuk MH (2006) J Bacteriol 188:5561–5569CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li W, Blaesi EJ, Pecore MD, Crowell JK, Pierce BS (2013) Biochemistry 52:9104–9119CrossRefPubMedGoogle Scholar
  12. 12.
    Siakkou E, Rutledge MT, Wilbanks SM, Jameson GNL (2011) Biochim Biophys Acta 1814:2003–2009CrossRefPubMedGoogle Scholar
  13. 13.
    Davies CG, Fellner M, Tchesnokov EP, Wilbanks SM, Jameson GNL (2014) Biochemistry 53:7961–7968CrossRefPubMedGoogle Scholar
  14. 14.
    Simmons CR, Liu Q, Huang Q, Hao Q, Begley TP, Karplus PA, Stipanuk MH (2006) J Biol Chem 281:18723–18733CrossRefPubMedGoogle Scholar
  15. 15.
    Kleffmann T, Jongkees SA, Fairweather G, Wilbanks SM, Jameson GN (2009) J Biol Inorg Chem 14:913–921CrossRefPubMedGoogle Scholar
  16. 16.
    Ye S, Wu X, Wei L, Tang D, Sun P, Bartlam M, Rao Z (2007) J Biol Chem 282:3391–3402CrossRefPubMedGoogle Scholar
  17. 17.
    Driggers CM, Cooley RB, Sankaran B, Hirschberger LL, Stipanuk MH, Karplus PA (2013) J Mol Biol 425:3121–3136CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dominy JE Jr, Hwang J, Guo S, Hirschberger LL, Zhang S, Stipanuk MH (2008) J Biol Chem 283:12188–12201CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fellner M, Doughty LM, Jameson GNL, Wilbanks SM (2014) Anal Biochem 459:56–60CrossRefPubMedGoogle Scholar
  20. 20.
    Siakkou E, Wilbanks SM, Jameson GNL (2010) Anal Biochem 405:127–131CrossRefPubMedGoogle Scholar
  21. 21.
    Souness RJ, Kleffmann T, Tchesnokov EP, Wilbanks SM, Jameson GB, Jameson GNL (2013) Biochemistry 52:7606–7617CrossRefPubMedGoogle Scholar
  22. 22.
    Pflugrath JW (1999) Acta Crystallogr D Biol Crystallogr 55:1718–1725CrossRefPubMedGoogle Scholar
  23. 23.
    Leslie AGW, Powell HR (2007) Nato Sci Ser II Math 245:41–51CrossRefGoogle Scholar
  24. 24.
    Evans PR, Murshudov GN (2013) Acta Crystallogr D Biol Crystallogr 69:1204–1214CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bailey S (1994) Acta Crystallogr Sect D Biol Crystallogr 50:760–763CrossRefGoogle Scholar
  26. 26.
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Crystallogr D Biol Crystallogr 66:213–221CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132CrossRefPubMedGoogle Scholar
  28. 28.
    Moriarty NW, Grosse-Kunstleve RW, Adams PD (2009) Acta Crystallogr Sect D Biol Crystallogr 65:1074–1080CrossRefGoogle Scholar
  29. 29.
    Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) Acta Crystallogr D Biol Crystallogr 66:12–21CrossRefPubMedGoogle Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  31. 31.
    Aluri S, de Visser SP (2007) J Am Chem Soc 129:14846–14847CrossRefPubMedGoogle Scholar
  32. 32.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  33. 33.
    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785–789CrossRefPubMedGoogle Scholar
  34. 34.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  35. 35.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  36. 36.
    Simmons CR, Hirschberger LL, Machi MS, Stipanuk MH (2006) Protein Express Purif 47:74–81CrossRefGoogle Scholar
  37. 37.
    Prudent M, Girault HH (2009) Metallomics 1:157–165CrossRefPubMedGoogle Scholar
  38. 38.
    McCoy JG, Bailey LJ, Bitto E, Bingman CA, Aceti DJ, Fox BG, Phillips GN Jr (2006) Proc Natl Acad Sci USA 103:3084–3089CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Blaesi EJ, Fox BG, Brunold TC (2015) Biochemistry 54:2874–2884CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Solomon EI, Decker A, Lehnert N (2003) Proc Natl Acad Sci USA 100:3589–3594CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL (2006) Nature 440:368–371CrossRefPubMedGoogle Scholar
  42. 42.
    Neidig ML, Brown CD, Light KM, Fujimori DG, Nolan EM, Price JC, Barr EW, Bollinger JM, Krebs C, Walsh CT, Solomon EI (2007) J Am Chem Soc 129:14224–14231CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SBIC 2016

Authors and Affiliations

  • Matthias Fellner
    • 1
  • Eleni Siakkou
    • 1
  • Abayomi S. Faponle
    • 3
  • Egor P. Tchesnokov
    • 1
  • Sam P. de Visser
    • 3
  • Sigurd M. Wilbanks
    • 2
  • Guy N. L. Jameson
    • 1
  1. 1.Department of ChemistryUniversity of OtagoDunedinNew Zealand
  2. 2.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  3. 3.Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical ScienceThe University of ManchesterManchesterUK

Personalised recommendations