Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques

  • Victor G. Mihucz
  • Florian Meirer
  • Zsófia Polgári
  • Andrea Réti
  • Giancarlo Pepponi
  • Dieter Ingerle
  • Norbert SzoboszlaiEmail author
  • Christina Streli
Original Paper


Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95 % hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake.


Cancer cells Fe storage Micro-X-ray imaging Transferrin 



The technical as well as financial supports from DESY and Diamond Light Source contract No I-20110800 EC and 10230, respectively, are hereby acknowledged. The authors express their gratitude to Ian Pape and Kawal J. S. Sawhney for their efforts made in preparing the X-ray imaging experiments. The research leading to these results has also received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant agreement No 226716.

Supplementary material

775_2015_1331_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1370 kb)


  1. 1.
    Walker BL, Tiong JW, Jefferies WA (2001) Int Rev Cytol 211:241–278CrossRefPubMedGoogle Scholar
  2. 2.
    Hentze MW, Muckenthaler MU, Andrews NC (2004) Cell 117:285–297CrossRefPubMedGoogle Scholar
  3. 3.
    Dhungana S, Taboy CH, Zak O, Larvie M, Crumbliss AL, Aisen P (2004) Biochemistry 43:205–209CrossRefPubMedGoogle Scholar
  4. 4.
    Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Nat Genet 37:1264–1269CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kwok JC, Richardson DR (2002) Crit Rev Oncol Hematol 42:65–78CrossRefPubMedGoogle Scholar
  6. 6.
    Dominici S, Pieri L, Comporti M, Pompella A (2003) Cancer Cell Int 3:7–14CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Adams PC, Barton JC (2007) Lancet 370:1855–1860CrossRefPubMedGoogle Scholar
  8. 8.
    Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Int J Hematol 88:7–15CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kakhlon O, Cabantchik ZI (2002) Free Radic Biol Med 33:1037–1046CrossRefPubMedGoogle Scholar
  10. 10.
    Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ (2006) Proc Natl Acad Sci USA 103:13612–13617CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Golan JL, Hediger MA (1997) Nature 388:482–488CrossRefPubMedGoogle Scholar
  12. 12.
    Mackenzie B, Ujwal ML, Chang MH, Romero MF, Hediger MA (2006) Pflügers Arch 451:544–558CrossRefPubMedGoogle Scholar
  13. 13.
    Breuer W, Shvartsmann M, Cabantchik I (2008) Int J Biochem Cell Biol 40:350–354CrossRefPubMedGoogle Scholar
  14. 14.
    Sturrock A, Alexander J, Lamb J, Craven CM, Kaplan J (1990) J Biol Chem 265:3139–3145PubMedGoogle Scholar
  15. 15.
    Epsztejn S, Kakhlon O, Glickstein H, Breuer W, Cabantchik I (1997) Anal Biochem 248:31–40CrossRefPubMedGoogle Scholar
  16. 16.
    Petrat F, de Groot H, Sustmann R, Rauen U (2002) Biol Chem 383:489–502CrossRefPubMedGoogle Scholar
  17. 17.
    Prus E, Fibach E (2008) Br J Haematol 142:301–307CrossRefPubMedGoogle Scholar
  18. 18.
    Au-Yeung HY, Chan J, Chantarojsiri T, Chang CJ (2013) J Am Chem Soc 135:15165–15173CrossRefPubMedGoogle Scholar
  19. 19.
    Polgári Z, Ajtony Z, Kregsamer P, Streli C, Mihucz VG, Réti A, Barna B, Kralovánszky J, Szoboszlai N, Záray G (2011) Talanta 85:1959–1965CrossRefPubMedGoogle Scholar
  20. 20.
    Szoboszlai N, Polgári Z, Mihucz VG, Záray G (2009) Anal Chim Acta 633:1–18CrossRefPubMedGoogle Scholar
  21. 21.
    Meirer F, Singh A, Pianetta P, Pepponi G, Meirer F, Streli C, Homma T (2010) TrAC 29:479–496Google Scholar
  22. 22.
    Polgári Z, Meirer F, Sasamori S, Ingerle D, Pepponi G, Streli C, Rickers K, Réti A, Budai B, Szoboszlai N, Záray G (2011) Spectrochim Acta B 66:274–279CrossRefGoogle Scholar
  23. 23.
    Meirer F, Pepponi G, Streli C, Wobrauschek P, Mihucz VG, Záray G, Czech V, Broekaert JAC, Fittschen UEA, Falkenberg G (2007) X-Ray Spectrom 36:408–412CrossRefGoogle Scholar
  24. 24.
    Meirer F, Pepponi G, Streli C, Wobrauschek P, Kregsamer P, Zoeger N, Falkenberg G (2008) Spectrochim Acta B 63:1496–1502CrossRefGoogle Scholar
  25. 25.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541CrossRefPubMedGoogle Scholar
  26. 26.
    Sawhney KJS, Dolbnya IP, Tiwari MK, Alianelli L, Scott SM, Preece GM, Pedersen UK, Walton RD (2010) AIP Conf Proc 1234:387CrossRefGoogle Scholar
  27. 27.
    Okazaki F, Matsunaga N, Okazaki H, Utoguchi N, Suzuki R, Maruyama K, Koyanagi S, Ohdo S (2010) Cancer Res 70:6238–6246CrossRefPubMedGoogle Scholar
  28. 28.
    Neckers LM, Trepel JB (1986) Cancer Invest 4:461–470CrossRefPubMedGoogle Scholar
  29. 29.
    Szoboszlai N, Réti A, Budai B, Szabó Z, Kralovánszky J, Záray G (2008) Spectrochim Acta B 63:1480–1484CrossRefGoogle Scholar
  30. 30.
    Olivieri NF (1999) N Engl J Med 341:99–109CrossRefPubMedGoogle Scholar
  31. 31.
    Galanello R, Origa R (2010) Orphanet J Rare Dis 5:11–26CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Asakura K, Nomura M, Kuroda H (1985) Bull Chem Soc Jpn 58:1543–1550CrossRefGoogle Scholar
  33. 33.
    Bacquart T, Devès G, Carmona A, Tucoulou R, Bohic S, Ortega R (2007) Anal Chem 79:7353–7359CrossRefPubMedGoogle Scholar
  34. 34.
    Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119:6297–6314CrossRefGoogle Scholar

Copyright information

© SBIC 2016

Authors and Affiliations

  • Victor G. Mihucz
    • 1
  • Florian Meirer
    • 2
  • Zsófia Polgári
    • 1
  • Andrea Réti
    • 3
  • Giancarlo Pepponi
    • 4
  • Dieter Ingerle
    • 5
  • Norbert Szoboszlai
    • 1
    Email author
  • Christina Streli
    • 5
  1. 1.Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands
  3. 3.2nd Department of PathologySemmelweis UniversityBudapestHungary
  4. 4.Micro Nano Analytical Laboratory, Centre for Materials and MicrosystemsFondazione Bruno KesslerTrentoItaly
  5. 5.AtominstitutTechnische Universitaet WienViennaAustria

Personalised recommendations