JBIC Journal of Biological Inorganic Chemistry

, Volume 20, Issue 8, pp 1239–1251 | Cite as

Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli

  • Stephen P. LaVoie
  • Daphne T. Mapolelo
  • Darin M. Cowart
  • Benjamin J. Polacco
  • Michael K. Johnson
  • Robert A. Scott
  • Susan M. Miller
  • Anne O. Summers
Original Paper


The protean chemical properties of the toxic metal mercury (Hg) have made it attractive in diverse applications since antiquity. However, growing public concern has led to an international agreement to decrease its impact on health and the environment. During a recent proteomics study of acute Hg exposure in E. coli, we also examined the effects of inorganic and organic Hg compounds on thiol and metal homeostases. On brief exposure, lower concentrations of divalent inorganic mercury Hg(II) blocked bulk cellular thiols and protein-associated thiols more completely than higher concentrations of monovalent organomercurials, phenylmercuric acetate (PMA) and merthiolate (MT). Cells bound Hg(II) and PMA in excess of their available thiol ligands; X-ray absorption spectroscopy indicated nitrogens as likely additional ligands. The mercurials released protein-bound iron (Fe) more effectively than common organic oxidants and all disturbed the Na+/K+ electrolyte balance, but none provoked efflux of six essential transition metals including Fe. PMA and MT made stable cysteine monothiol adducts in many Fe-binding proteins, but stable Hg(II) adducts were only seen in CysXxx(n)Cys peptides. We conclude that on acute exposure: (a) the distinct effects of mercurials on thiol and Fe homeostases reflected their different uptake and valences; (b) their similar effects on essential metal and electrolyte homeostases reflected the energy dependence of these processes; and (c) peptide phenylmercury-adducts were more stable or detectable in mass spectrometry than Hg(II)-adducts. These first in vivo observations in a well-defined model organism reveal differences upon acute exposure to inorganic and organic mercurials that may underlie their distinct toxicology.


Metal toxicity Electrolyte balance Proteomics EPR EXAFS 



We thank Mary Lipton, Erika Zink, and Samuel Purvine (all of the DOE Pacific Northwest National Laboratory) for chemical and biophysical acquisition and SEQUEST analysis of the proteomic data, Tejas Chaudhari and Sagar Tarkhadkar (Department of Computer Sciences, Univ. of Georgia) for assistance with database development and management, and Graham George (University of Saskatchewan and the Canadian Light Source) for mercuric bromide EXAFS data collection. This work was supported by DOE awards ER64408 and ER65286 to AOS and ER64409 and ER65195 to SMM and NIH award GM62524 to MKJ.

Supplementary material

775_2015_1303_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1856 kb)


  1. 1.
    Barkay T, Miller SM, Summers AO (2003) FEMS Microbiol Rev 27:355–384CrossRefPubMedGoogle Scholar
  2. 2.
    Mason RP, Fitzgerald WF, Morel FMM (1994) Geochim Cosmochim Acta 58:3191–3198CrossRefGoogle Scholar
  3. 3.
    Norn S, Permin H, Kruse E, Kruse PR (2008) Dan Medicin Arbog 36:21–40Google Scholar
  4. 4.
    Crinnion WJ (2000) Altern Med Rev 5:209–223PubMedGoogle Scholar
  5. 5.
    Richardson GM, Wilson R, Allard D, Purtill C, Douma S, Graviere J (2011) Sci Total Environ 409:4257–4268CrossRefPubMedGoogle Scholar
  6. 6.
    Malm O (1998) Environ Res 77:73–78CrossRefPubMedGoogle Scholar
  7. 7.
    Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, Al-Rawi NY, Tikriti S, Dahahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Science 181:230–241CrossRefPubMedGoogle Scholar
  8. 8.
    Yorifuji T, Tsuda T, Takao S, Harada M (2008) Epidemiology 19:3–9CrossRefPubMedGoogle Scholar
  9. 9.
    Davidson PW, Myers GJ, Weiss B (2004) Pediatrics 113:1023–1029PubMedGoogle Scholar
  10. 10.
    Clarkson TW, Magos L (2006) Crit Rev Toxicol 36:609–662CrossRefPubMedGoogle Scholar
  11. 11.
    Cheesman BV, Arnold AP, Rabenstein DL (1988) J Am Chem Soc 110:6359–6364CrossRefGoogle Scholar
  12. 12.
    Oram PD, Fang X, Fernando Q, Letkeman P, Letkeman D (1996) Chem Res Toxicol 9:709–712CrossRefPubMedGoogle Scholar
  13. 13.
    Valko M, Morris H, Cronin MT (2005) Curr Med Chem 12:1161–1208CrossRefPubMedGoogle Scholar
  14. 14.
    Schafer FQ, Buettner GR (2001) Free Radic Biol Med 30:1191–1212CrossRefPubMedGoogle Scholar
  15. 15.
    Miseta A, Csutora P (2000) Mol Biol Evol 17:1232–1239CrossRefPubMedGoogle Scholar
  16. 16.
    Carvalho CM, Chew EH, Hashemy SI, Lu J, Holmgren A (2008) J Biol Chem 283:11913–11923CrossRefPubMedGoogle Scholar
  17. 17.
    O’Connor TR, Graves RJ, de Murcia G, Castaing B, Laval J (1993) J Biol Chem 268:9063–9070PubMedGoogle Scholar
  18. 18.
    Imesch E, Moosmayer M, Anner BM (1992) Am J Physiol 262:F837–F842PubMedGoogle Scholar
  19. 19.
    Soskine M, Steiner-Mordoch S, Schuldiner S (2002) Proc Natl Acad Sci USA 99:12043–12048PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Khan MA, Wang F (2009) Environ Toxicol Chem 28:1567–1577CrossRefPubMedGoogle Scholar
  21. 21.
    Gladyshev VN, Kryukov GV (2001) BioFactors 14:87–92CrossRefPubMedGoogle Scholar
  22. 22.
    Finney LA, O’Halloran TV (2003) Science 300:931–936CrossRefPubMedGoogle Scholar
  23. 23.
    Helbig K, Bleuel C, Krauss GJ, Nies DH (2008) J Bacteriol 190:5431–5438PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Curr Top Med Chem 1:529–539CrossRefPubMedGoogle Scholar
  25. 25.
    Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) J Biol Inorg Chem 13:1205–1218CrossRefPubMedGoogle Scholar
  26. 26.
    Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Nature 460:823–830CrossRefPubMedGoogle Scholar
  27. 27.
    Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole FL II, Jenney FE Jr, Lancaster WA, Praissman JL, Shanmukh S, Vaccaro BJ, Trauger SA, Kalisiak E, Apon JV, Siuzdak G, Yannone SM, Tainer JA, Adams MW (2010) Nature 466:779–782CrossRefPubMedGoogle Scholar
  28. 28.
    Polacco BJ, Purvine SO, Zink EM, Lavoie SP, Lipton MS, Summers AO, Miller SM (2011) Mol Cell Proteomics 10(M110):004853PubMedGoogle Scholar
  29. 29.
    Neidhardt FC, Bloch PL, Smith DF (1974) J Bacteriol 119:736–747PubMedCentralPubMedGoogle Scholar
  30. 30.
    Bradford MM (1976) Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  31. 31.
    Cayley S, Record MT Jr (2003) Biochemistry 42:12596–12609CrossRefPubMedGoogle Scholar
  32. 32.
    Ellman GL (1959) Arch Biochem Biophys 82:70–77CrossRefPubMedGoogle Scholar
  33. 33.
    Woodmansee AN, Imlay JA (2002) Methods Enzymol 349:3–9CrossRefPubMedGoogle Scholar
  34. 34.
    Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, O’Donovan C (2015) Nucleic Acids Res 43:D1057–D1063PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Kim S, Gupta N, Pevzner PA (2008) J Proteome Res 7:3354–3363PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Anal Chem 74:5383–5392CrossRefPubMedGoogle Scholar
  37. 37.
    Scott RA (2000) Physical methods in bioinorganic chemistry—spectroscopy and magnetism. University Science Books, Sausalito, pp 465–504Google Scholar
  38. 38.
    George GN, Garrett RM, Prince RC, Rajagopalan KV (1996) J Am Chem Soc 118:8588–8592CrossRefGoogle Scholar
  39. 39.
    Ankudinov AL, Bouldin CE, Rehr JJ, Sims J, Hung H (2002) Phys Rev B 65Google Scholar
  40. 40.
    Mustre de Leon J, Rehr JJ, Zabinsky SI, Albers RC (1991) Phys Rev B Condens Matter 44:4146–4156Google Scholar
  41. 41.
    Cosper NJ, Stalhandske CM, Saari RE, Hausinger RP, Scott RA (1999) J Biol Inorg Chem 4:122–129CrossRefPubMedGoogle Scholar
  42. 42.
    Tyagarajan K, Pretzer E, Wiktorowicz JE (2003) Electrophoresis 24:2348–2358CrossRefPubMedGoogle Scholar
  43. 43.
    Fruchter RG, Crestfield AM (1967) J Biol Chem 242:5807–5812PubMedGoogle Scholar
  44. 44.
    Boja ES, Fales HM (2001) Anal Chem 73:3576–3582CrossRefPubMedGoogle Scholar
  45. 45.
    Cotner RC, Clagett CO (1973) Anal Biochem 54:170–177CrossRefPubMedGoogle Scholar
  46. 46.
    Basinger MA, Casas J, Jones MM, Weaver AD, Weinstein NH (1981) J Inorg Nucl Chem 43:1419–1425CrossRefGoogle Scholar
  47. 47.
    Khokhlova A, Chernikova G, Shishin L (1982). Inst obs neorg khimii im ns kurnakova leninski prospekt 31, 71 Moscow, Russia, pp 2976–2978Google Scholar
  48. 48.
    Powell KJ, Brown PL, Byrne RH, Gajda T, Hefter G, Sjoberg S, Wanner H (2005) IUPAC. Pure Appl Chem 77:739–800CrossRefGoogle Scholar
  49. 49.
    Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Annu Rev Biochem 74:247–281CrossRefPubMedGoogle Scholar
  50. 50.
    Keyer K, Imlay JA (1997) J Biol Chem 272:27652–27659CrossRefPubMedGoogle Scholar
  51. 51.
    Lafrance-Vanasse J, Lefebvre M, Di Lello P, Sygusch J, Omichinski JG (2009) J Biol Chem 284:938–944CrossRefPubMedGoogle Scholar
  52. 52.
    Parks JM, Guo H, Momany C, Liang L, Miller SM, Summers AO, Smith JC (2009) J Am Chem Soc 131:13278–13285CrossRefPubMedGoogle Scholar
  53. 53.
    Xu FF, Imlay JA (2012) Appl Environ Microbiol 78:3614–3621PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Stricks W, Kolthoff IM (1953) J Am Chem Soc 75:5673–5681CrossRefGoogle Scholar
  55. 55.
    Güzeloğlu Ş, Yalçın G, Pekin M (1998) J Organomet Chem 568:143–147CrossRefGoogle Scholar
  56. 56.
    McClintock CS, Parks JM, Bern M, Ghattyvenkatakrishna PK, Hettich RL (2013) J Proteome Res 12:3307–3316PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Roosild TP, Castronovo S, Healy J, Miller S, Pliotas C, Rasmussen T, Bartlett W, Conway SJ, Booth IR (2010) Proc Natl Acad Sci USA 107:19784–19789PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Ferguson GP (1999) Trends Microbiol 7:242–247CrossRefPubMedGoogle Scholar
  59. 59.
    Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Nature 435:1197–1202CrossRefPubMedGoogle Scholar
  60. 60.
    Padan E (2011) Compr Physiol 1:1711–1719PubMedGoogle Scholar
  61. 61.
    Taglicht D, Padan E, Schuldiner S (1991) J Biol Chem 266:11289–11294PubMedGoogle Scholar
  62. 62.
    Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D (2005) Arch Microbiol 183:9–18CrossRefPubMedGoogle Scholar
  63. 63.
    Zheng M, Doan B, Schneider TD, Storz G (1999) J Bacteriol 181:4639–4643PubMedCentralPubMedGoogle Scholar
  64. 64.
    Nies DH (2003) FEMS Microbiol Rev 27:313–339CrossRefPubMedGoogle Scholar
  65. 65.
    Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A (2006) J Am Chem Soc 128:2172–2173CrossRefPubMedGoogle Scholar
  66. 66.
    Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A (2007) J Am Chem Soc 129:244–245CrossRefPubMedGoogle Scholar
  67. 67.
    Brooks P, Davidson N (1960) J Am Chem Soc 82:2118–2123CrossRefGoogle Scholar
  68. 68.
    Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 37:911–917CrossRefPubMedGoogle Scholar
  69. 69.
    Summers AO, Wireman J, Vimy MJ, Lorscheider FL, Marshall B, Levy SB, Bennett S, Billard L (1993) Antimicrob Agents Chemother 37:825–834PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Rietschel RL, Wilson LA (1982) Arch Dermatol 118:147–149CrossRefPubMedGoogle Scholar
  71. 71.
    Tosti A, Tosti G (1988) Contact Dermatitis 18:268–273CrossRefPubMedGoogle Scholar
  72. 72.
    Freed LF (1948) S Afr Med J 22:223–229PubMedGoogle Scholar
  73. 73.
    Weed LE, Ecker EE (1931) J Infect Dis 49:440–449Google Scholar
  74. 74.
    Ball LK, Ball R, Pratt RD (2001) Pediatrics 107:1147–1154CrossRefPubMedGoogle Scholar
  75. 75.
    WHO (2002) Wkly Epidemiol Rec 77:305–316Google Scholar
  76. 76.
    Gutknecht J (1981) J Membr Biol 61:61–66CrossRefGoogle Scholar
  77. 77.
    Barkay T, Gillman M, Turner RR (1997) Appl Environ Microbiol 63:4267–4271PubMedCentralPubMedGoogle Scholar
  78. 78.
    Owens RA, Hartman PE (1986) J Bacteriol 168:109–114PubMedCentralPubMedGoogle Scholar
  79. 79.
    Eser M, Masip L, Kadokura H, Georgiou G, Beckwith J (2009) Proc Natl Acad Sci USA 106:1572–1577PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Ndu U, Mason RP, Zhang H, Lin S, Visscher PT (2012) Appl Environ Microbiol 78:7276–7282PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Mah V, Jalilehvand F (2008) J Biol Inorg Chem 13:541–553CrossRefPubMedGoogle Scholar
  82. 82.
    Ravichandran M (2004) Chemosphere 55:319–331CrossRefPubMedGoogle Scholar
  83. 83.
    Imlay JA (2013) Nat Rev Microbiol 11:443–454PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Ledwidge R, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova J, Summers AO, Pai EF, Miller SM (2005) Biochemistry 44:11402–11416CrossRefPubMedGoogle Scholar
  85. 85.
    Jung YS, Yu L, Golbeck JH (1995) Photosynth Res 46:249–255CrossRefPubMedGoogle Scholar
  86. 86.
    Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F (2013) Biochim Biophys Acta 1827:455–469CrossRefPubMedGoogle Scholar
  87. 87.
    Hong B, Nauss R, Harwood IM, Miller SM (2010) Biochemistry 49:8187–8196PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Gabriel SE, Helmann JD (2009) J Bacteriol 191:6116–6122PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2015

Authors and Affiliations

  • Stephen P. LaVoie
    • 1
  • Daphne T. Mapolelo
    • 2
    • 3
  • Darin M. Cowart
    • 2
  • Benjamin J. Polacco
    • 4
  • Michael K. Johnson
    • 2
  • Robert A. Scott
    • 2
  • Susan M. Miller
    • 4
  • Anne O. Summers
    • 1
  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA
  2. 2.Department of ChemistryUniversity of GeorgiaAthensUSA
  3. 3.Department of ChemistryUniversity of BotswanaGaboroneBotswana
  4. 4.Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations