JBIC Journal of Biological Inorganic Chemistry

, Volume 20, Issue 7, pp 1175–1191 | Cite as

Oxidovanadium(IV) complexes with chrysin and silibinin: anticancer activity and mechanisms of action in a human colon adenocarcinoma model

  • I. E. León
  • J. F. Cadavid-Vargas
  • I. Tiscornia
  • V. Porro
  • S. Castelli
  • P. Katkar
  • A. Desideri
  • M. Bollati-Fogolin
  • S. B. EtcheverryEmail author
Original Paper


Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal antitumor agents in combination to its low toxicity. On the other hand, flavonoids are a wide family of polyphenolic compounds synthesized by plants that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, a exhaustive study of the mechanisms of action of two oxidovanadium(IV) complexes with the flavonoids: silibinin Na2[VO(silibinin)2]·6H2O (VOsil) and chrysin [VO(chrysin)2EtOH]2 (VOchrys) on human colon adenocarcinoma derived cell line HT-29. The complexes inhibited the cell viability of colon adenocarcinoma cells in a dose dependent manner with a greater potency than that the free ligands and free metal, demonstrating the benefit of complexation. The decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of both complexes. Besides, VOchrys caused cell cycle arrest in G2/M phase while VOsil activated caspase 3 and triggering the cells directly to apoptosis. Moreover, VOsil diminished the NF-kB activation via increasing the sensitivity of cells to apoptosis. On the other hand, VOsil inhibited the topoisomerase IB activity concluding that this is important target involved in the anticancer vanadium effects. As a whole, the results presented herein demonstrate that VOsil has a stronger deleterious action than VOchrys on HT-29 cells, whereby suggesting that Vosil is the potentially best candidate for future use in alternative anti-tumor treatments.

Graphical Abstract


Metal based drug HT-29 human colon adenocarcinoma cells Mechanisms of action Flavonoids Vanadium 



This work was partly supported by UNLP (11X/690), CONICET (PIP 1125), and ANPCyT (PICT 2008-2218) from Argentina, project No 10121 Italian Association for Cancer Research (AIRC). S.B.E. is member of the Carrera del Investigador, CONICET, Argentina. I.E.L. has a fellowship from CONICET, Argentina, and a fellowship from AMSUD- PASTEUR, Institut Pasteur, Uruguay. J.F.C.V has a fellowship from CONICET, Argentina. I.T, V.P. and M.B.F. are members of the Sistema Nacional de Investigadores of the Agencia Nacional de Investigación e Innovación in Uruguay.

Supplementary material

775_2015_1298_MOESM1_ESM.pdf (190 kb)
Supplementary material 1 (PDF 190 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) CA Cancer J Clin 61:69–90CrossRefPubMedGoogle Scholar
  2. 2.
    Surh YJ (2003) Nat Rev Cancer 3:768–780CrossRefPubMedGoogle Scholar
  3. 3.
    Nielsen FH (1995) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vanadium and its role in life. Dekker, New York, pp 543–574Google Scholar
  4. 4.
    Srivastava K, Mehdi MZ (2004) Diabet Med 22:2–13CrossRefGoogle Scholar
  5. 5.
    Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) J Inorg Biochem 103:554–558CrossRefPubMedGoogle Scholar
  6. 6.
    Shioda N, Han F, Fukunaga K (2009) Int Rev Neurobiol 85:375–387CrossRefPubMedGoogle Scholar
  7. 7.
    Evangelou AM (2002) Crit Rev Oncol Hematol 42:249–265CrossRefPubMedGoogle Scholar
  8. 8.
    Etcheverry SB, Williams PAM (2009) New developments in medicinal chemistry. In: Ortega MP, Gil IC (eds) Medicinal chemistry of copper and vanadium bioactive compounds. Nova, Hauppauge, pp 105–129Google Scholar
  9. 9.
    Barrio DA, Etcheverry SB (2010) Curr Med Chem 17:3632–3642CrossRefPubMedGoogle Scholar
  10. 10.
    Köpf-Maier P (1987) Naturwissenschaften 74:374–382CrossRefPubMedGoogle Scholar
  11. 11.
    Naso LG, Ferrer EG, Butenko N, Cavaco I, Lezama L, Rojo T, Etcheverry SB, Williams PA (2011) J Biol Inorg Chem 16:653–668CrossRefPubMedGoogle Scholar
  12. 12.
    Naso LG, Ferrer EG, Lezama L, Rojo T, Etcheverry SB, Williams PA (2010) J Biol Inorg Chem 15:889–902CrossRefPubMedGoogle Scholar
  13. 13.
    Beecher GR (2003) J Nutr 133:3248S–3254SPubMedGoogle Scholar
  14. 14.
    Han X, Shen T, Lou H (2007) Int J Mol Sci 8:950–988PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Gazák R, Walterova D, Kren V (2007) Curr Med Chem 14:315–338CrossRefPubMedGoogle Scholar
  16. 16.
    Singh RP, Agarwal R (2004) Curr Cancer Drug Targets 4:1–11CrossRefPubMedGoogle Scholar
  17. 17.
    Hogan FS, Krishnegowda NK, Mikhailova M, Kahlenberg MS (2007) J Surg Res 143:58–65CrossRefPubMedGoogle Scholar
  18. 18.
    Ge Y, Zhang Y, Chen Y, Li Q, Chen J, Dong Y, Shi W (2011) Int J Mol Sci 12:4861–4871PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Koc AN, Silici S, Ayangil D, Ferahbas A, Cankay S (2005) Mycoses 48:205–210CrossRefPubMedGoogle Scholar
  20. 20.
    Sak K (2014) Pharmacogn Rev 8:122–146PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Yu XM, Phan T, Patel PN, Jaskula-Sztul R, Chen H (2013) Cancer 119:774–781PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Li X, Wang JN, Huang JM, Xiong XK, Chen MF, Ong CN, Shen HM, Yang XF (2011) Toxicol In Vitro 25:630–635CrossRefPubMedGoogle Scholar
  23. 23.
    Uivarosi V, Barbuceanu SF, Aldea V, Arama CC, Badea M, Olar R, Marinescu D (2010) Molecules 15:1578–1589CrossRefPubMedGoogle Scholar
  24. 24.
    Thompson KH, Orvig C (2001) Coord Chem Rev 219:1033–1053CrossRefGoogle Scholar
  25. 25.
    Rehder D, Costa Pessoa J, Geraldes CF, Castro MM, Kabanos T, Kiss T, Meier B, Micera G, Pettersson L, Rangel M (2002) J Biol Inorg Chem 7:384–396Google Scholar
  26. 26.
    Mukherjee R, Donnay EG, Radomski MA, Miller C, Redfern DA, Gericke A, Damron DS, Brasch NE (2008) Chem Commun (Camb) 32:3783–3785CrossRefGoogle Scholar
  27. 27.
    Leon IE, Di Virgilio AL, Porro V, Muglia CI, Naso LG, William PAM, Bollati Fogolin M, Etcheverry SB (2013) Dalton Trans 42:11868–11880Google Scholar
  28. 28.
    Leon IE, Porro V, Di Virgilio AL, Naso LG, William PAM, Bollati Fogolin M, Etcheverry SB (2014) J Biol Inorg Chem 19:59–74Google Scholar
  29. 29.
    Okajima T, Nakamura K, Zhang H, Ling N, Tanabe T, Yasuda T, Rosenfeld RG (1992) Endocrinology 130:2201–2212PubMedGoogle Scholar
  30. 30.
    Cortizo AM, Etcheverry SB (1995) Mol Cell Biochem 145:97–102CrossRefPubMedGoogle Scholar
  31. 31.
    Mosmann TT (1983) J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  32. 32.
    Borenfreund E, Puerner JA (1984) J Tissue Cult Methods 9:7–9CrossRefGoogle Scholar
  33. 33.
    Hissin PJ, Hilf R (1976) Anal Biochem 74:214–226CrossRefPubMedGoogle Scholar
  34. 34.
    Gong J, Traganos F, Darzynkiewicz Z (1994) Anal Biochem 218:314–319CrossRefPubMedGoogle Scholar
  35. 35.
    Guimarães FS, Andrade LF, Martins ST, Abud AP, Sene RV, Wanderer C, Tiscornia I, Bollati-Fogolín M, Buchi DF, Trindade ES (2010) BMC Cancer 10:113PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Chillemi G, Fiorani P, Castelli S, Bruselles A, Benedetti P, Desideri A (2005) NucleicAcids Res 33:3339–3350CrossRefGoogle Scholar
  37. 37.
    Jones DP, Carlson JL, Mody VC, Cai JY, Lynn MJ, Sternberg P (2000) Free Radic Biol Med 28:625–635CrossRefPubMedGoogle Scholar
  38. 38.
    Sherr CJ (2000) Cancer Res 60:3695–3698Google Scholar
  39. 39.
    Nagata S (2000) Exp Cell Res 256:12–18CrossRefPubMedGoogle Scholar
  40. 40.
    Hurley AA (2001) Curr Protoc Cytom 7.2.1–7.2.5Google Scholar
  41. 41.
    Pozarowski P, Grabarek J, Darzynkiewicz Z (2003) Curr Protoc Cytom 25:7.19.1–7.19.33Google Scholar
  42. 42.
    Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA (1995) Nature 376:37–43CrossRefPubMedGoogle Scholar
  43. 43.
    Sakahira H, Enari M, Nagata S (1998) Nature 391:96–99CrossRefPubMedGoogle Scholar
  44. 44.
    Porter AG, Janicke RU (1999) Cell Death Differ 6:99–104CrossRefPubMedGoogle Scholar
  45. 45.
    Sheikh MS, Huang Y (2003) Cell Cycle 2:550–552PubMedGoogle Scholar
  46. 46.
    Escárcega RO, Fuentes-Alexandro S, García-Carrasco M, Gatica A, Zamora A (2007) Clin Oncol 19:154–161CrossRefGoogle Scholar
  47. 47.
    Sethi G, Sung B, Aggarwal BB (2008) Exp Biol Med 233:21–31CrossRefGoogle Scholar
  48. 48.
    Oeckinghaus A, Hayden MS, Ghosh S (2011) Nat Immunol 12:695–708CrossRefPubMedGoogle Scholar
  49. 49.
    Champoux JJ (2001) Annu NY Rev Biochem 70:369–413CrossRefGoogle Scholar
  50. 50.
    Wang JC (1996) Ann Rev Biochem 65:635–692CrossRefPubMedGoogle Scholar
  51. 51.
    Boege F, Straub T, Kehr A, Bosenberg C, Christiansen K, Anderson A, Jakob F, Kohrle J (1996) J Biol Chem 271:2262–2270CrossRefPubMedGoogle Scholar
  52. 52.
    Bridewell DJ, Finlay GJ, Baguley BC (1997) Oncol Res 9:535–542PubMedGoogle Scholar
  53. 53.
    Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Acta Biochim Pol 59:195–200PubMedGoogle Scholar
  54. 54.
    Djordjevic C, Wampler GL (1985) J Inorg Biochem 25:51–55CrossRefPubMedGoogle Scholar
  55. 55.
    Bishayee A, Waghray A, Patel MA, Chatterjee M (2010) Cancer Lett 294:1–12CrossRefPubMedGoogle Scholar
  56. 56.
    Trainer DL, Kline T, McCabe FL, Faucette LF, Field J, Chaikin M, Anzano M, Rieman D, Hoffstein S, Li DJ (1988) Int J Cancer 41:287–296CrossRefPubMedGoogle Scholar
  57. 57.
    Lewis NA, Liu F, Seymour L, Magnusen A, Erves TR, Arca JF, Beckford FA, Venkatraman R, González-Sarrías A, Fronczek FR, Vanderveer DG, Seeram NP, Liu A, Jarrett WL, Holder AA (2012) Eur J Inorg Chem 4:664–677CrossRefGoogle Scholar
  58. 58.
    Crans DC, Woll KA, Prusinskas K, Johnson MD, Norkus E (2013) Inorg Chem 52:12262–12275CrossRefPubMedGoogle Scholar
  59. 59.
    Sanna D, Ugone V, Lubinu G, Micera G, Garribba E (2014) J Inorg Biochem 140:173–184CrossRefPubMedGoogle Scholar
  60. 60.
    Crans DC, Khan AR, Mahroof-Tahir M, Mondal S, Miller SM, la Cour A, Anderson OP, Jakusch T, Kiss T (2001) J Chem Soc Dalton Trans 3337–3345Google Scholar
  61. 61.
    Sanna D, Micera G, Garribba E (2010) Inorg Chem 49:174–187CrossRefPubMedGoogle Scholar
  62. 62.
    Willsky GR, Chi LH, Godzala M III, Kostyniak PJ, Smee JJ, Trujillo AM, Alfano JA, Ding W, Hu Z, Crans DC (2011) Coord Chem Rev 255:2258–2269PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Rivadeneira J, Di Virgilio AL, Barrio DA, Muglia CI, Bruzzone L, Etcheverry SB (2010) Med Chem 6:9–23CrossRefPubMedGoogle Scholar
  64. 64.
    Saxena AK, Srivastava P, Kale RK, Baquer NZ (1993) Biochem Pharmacol 45:539–542CrossRefPubMedGoogle Scholar
  65. 65.
    Sabbioni E, Pozzi G, Devos S, Pintar A, Casella L, Fischbach M (1993) Carcinogenesis 14:2565–2568CrossRefPubMedGoogle Scholar
  66. 66.
    Mukhtiar M, Khan MF, Jan SU, Khan H, Ullah N, Asim-ur-Rehman N (2012) Pak J Pharm Sci 25:549–553PubMedGoogle Scholar
  67. 67.
    Silvestri F, Ribatti D, Nico B, Silvestri N, Romito A, Dammacco F (1995) Ann Ital Med Int 10:7–13Google Scholar
  68. 68.
    Goncalves AP, Videira A, Soares P, Maximo V (2011) Life Sci 12:11–12Google Scholar
  69. 69.
    Montiel-Davalos A, Gonzalez-Villava A, Rodriguez-Lara V, Montano LF, Fortoul TI, Lopez-Marure R (2012) J Appl Toxicol 32:26–33CrossRefPubMedGoogle Scholar
  70. 70.
    Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K (2010) J Inorg Biochem 104:371–378CrossRefPubMedGoogle Scholar
  71. 71.
    Hosseini MJ, Seyedrazi N, Shahraki J, Pourahmad J (2012) Adv Biosci Biotechnol 3:1096–1103CrossRefGoogle Scholar
  72. 72.
    Afeseh Ngwa H, Kanthasamy A, Anantharam V, Song C, Witte T, Houk R, Kanthasamy AG (2009) Toxicol Appl Pharmacol 240:273–285Google Scholar
  73. 73.
    Wu Y, Ma Y, Xu Z, Wang D, Zhao B, Pan H, Wang J, Xu D, Zhao X, Pan S, Liu L, Dai W, Jiang H (2014) Cancer Lett 351:108–116CrossRefPubMedGoogle Scholar
  74. 74.
    Ray RS, Rana B, Swami B, Venu V, Chatterjee M (2006) Chem Biol Interact 163:239–247CrossRefPubMedGoogle Scholar
  75. 75.
    Fu Y, Wang Q, Yang XG, Yang XD, Wang K (2008) J Biol Inorg Chem 13:1001–1009CrossRefPubMedGoogle Scholar
  76. 76.
    Garg A, Aggarwal BB (2002) Leukemia 16:1053–1068CrossRefPubMedGoogle Scholar
  77. 77.
    Mantovani A, Marchesi F, Portal C, Allavena P, Sica A (2008) Adv Exp Med Biol 610:112–127CrossRefPubMedGoogle Scholar
  78. 78.
    Linnewiel-Hermoni K, Motro Y, Miller Y, Levy J, Sharoni Y (2014) Free Radic Biol Med 75:105–120CrossRefPubMedGoogle Scholar
  79. 79.
    Divya CS, Pillai MR (2006) Mol Carcinog 45:320–332CrossRefPubMedGoogle Scholar
  80. 80.
    Micheau O, Tschopp J (2003) Cell 114:181–190CrossRefPubMedGoogle Scholar
  81. 81.
    Mo XM, Chen ZF, Qi X, Li XT, Li J (2012) Bioinorg Chem Appl 75:63–74Google Scholar
  82. 82.
    Katkar P, Coletta A, Castelli S, Sabino GL, Couto RA, Ferreira AM, Desideri A (2014) Metallomics 6:117–125CrossRefPubMedGoogle Scholar
  83. 83.
    Chew ST, Lo KM, Lee SK, Heng MP, Teoh WY, Sim KS, Tan KW (2014) Eur J Med Chem 76:397–407CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2015

Authors and Affiliations

  • I. E. León
    • 1
    • 2
  • J. F. Cadavid-Vargas
    • 1
    • 2
  • I. Tiscornia
    • 3
  • V. Porro
    • 3
  • S. Castelli
    • 4
  • P. Katkar
    • 4
  • A. Desideri
    • 4
  • M. Bollati-Fogolin
    • 3
  • S. B. Etcheverry
    • 1
    • 2
    Email author
  1. 1.Cátedra de Bioquímica Patológica, Facultad Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Unidad de Biología Celular, Institut Pasteur de MontevideoMontevideoUruguay
  4. 4.Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations