Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 20, Issue 7, pp 1109–1121 | Cite as

Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease

  • Dominga Rogolino
  • Alessia Bacchi
  • Laura De Luca
  • Gabriele Rispoli
  • Mario Sechi
  • Annelies Stevaert
  • Lieve Naesens
  • Mauro Carcelli
Original Paper

Abstract

The influenza virus PA endonuclease is an attractive target for the development of novel anti-influenza virus therapeutics, which are urgently needed because of the emergence of drug-resistant viral strains. Reported PA inhibitors are assumed to chelate the divalent metal ion(s) (Mg2+ or Mn2+) in the enzyme’s catalytic site, which is located in the N-terminal part of PA (PA-Nter). In the present work, a series of salicylaldehyde thiosemicarbazone derivatives have been synthesized and evaluated for their ability to inhibit the PA-Nter catalytic activity. Compounds 16 have been evaluated against influenza virus, both in enzymatic assays with influenza virus PA-Nter and in virus yield assays in MDCK cells. In order to establish a structure–activity relationship, the hydrazone analogue of the most active thiosemicarbazone has also been evaluated. Since chelation may represent a mode of action of such class of molecules, we studied the interaction of two of them, one with and one without biological activity versus the PA enzyme, towards Mg2+, the ion that is probably involved in the endonuclease activity of the heterotrimeric influenza polymerase complex. The crystal structure of the magnesium complex of the o-vanillin thiosemicarbazone ligand 1 is also described. Moreover, docking studies of PA endonuclease with compounds 1 and 2 were performed, to further analyse the possible mechanism of action of this class of inhibitors.

Keywords

Influenza virus Thiosemicarbazone Endonuclease Metal chelation Antiviral 

Notes

Acknowledgments

The authors thank the “Centro Interfacoltà Misure Giuseppe Casnati” of the University of Parma for facilities. L. Naesens and A. Stevaert acknowledge financial support from the Geconcerteerde Onderzoeksacties—KU Leuven (GOA/15/019/TBA) and the technical assistance from Wim van Dam, Leentje Persoons en Ria Van Berwaer.

Supplementary material

775_2015_1292_MOESM1_ESM.pdf (148 kb)
Supplementary material 1 (PDF 148 kb)

References

  1. 1.
    Deyde VM, Xu X, Bright RA, Shaw M, Smith CB, Zhang Y, Shu Y, Gubareva LV, Cox NJ, Klimov AI (2007) J Infect Dis 196:249–257CrossRefPubMedGoogle Scholar
  2. 2.
    Moscona A (2009) N Engl J Med 360:953–956CrossRefPubMedGoogle Scholar
  3. 3.
    Memoli MJ, Davis AS, Proudfoot K, Chertow DS, Hrabal RJ, Bristol T, Taubenberger JK (2011) J Infect Dis 203:348–357PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Van der Vries E, Schutten M, Fraaij P, Boucher C, Osterhaus A (2013) Adv Pharmacol 67:217–246CrossRefPubMedGoogle Scholar
  5. 5.
    Vanderlinden E, Naesens L (2014) Med Res Rev 34:301–339CrossRefPubMedGoogle Scholar
  6. 6.
    Honda A, Ishihama A (1997) Biol. Chem 378:483–488PubMedGoogle Scholar
  7. 7.
    Honda A, Mizumoto K, Ishihama A (2002) Proc Natl Acad Sci USA 99:13166–13171PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Das K, Aramini JM, Ma LC, Krug RM, Arnold E (2010) Nat Struct Mol Biol 17:530–538PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Dias A, Bouvier D, Crépin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (2009) Nature 458:914–918CrossRefPubMedGoogle Scholar
  10. 10.
    Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, Fodor E, Rao Z, Liu Y (2009) Nature 458:909–913CrossRefPubMedGoogle Scholar
  11. 11.
    Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) Cell 23:847–858CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao C, Lou Z, Guo Y, Ma M, Chen Y, Liang S, Zhang L, Chen S, Li X, Liu Y, Bartlam M, Rao Z (2009) J Virol 83:9024–9030PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    DuBois RM, Slavish PJ, Baughman BM, Yun MK, Bao J, Webby RJ, Webb TR, White SW (2012) PLoS Pathog 8:e1002830PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Kowalinski E, Zubieta C, Wolkerstorfer A, Szolar OH, Ruigrok RW, Cusack S (2012) PLoS Pathog 8:e1002831PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Doan L, Handa B, Roberts NA, Klumpp K (1999) Biochemistry 38:5612–5629CrossRefPubMedGoogle Scholar
  16. 16.
    Xiao S, Klein ML, LeBard DN, Levine BG, Liang H, MacDermaid CM, Alfonso-Prieto M (2014) J Phys Chem B 118:873–889CrossRefPubMedGoogle Scholar
  17. 17.
    Rogolino D, Carcelli M, Sechi M, Neamati N (2012) Coord Chem Rev 256:3063–3086CrossRefGoogle Scholar
  18. 18.
    Tomassini JE, Selnick H, Davies ME, Armstrong ME, Baldwin J, Bourgeois M, Hastings J, Hazuda D, Lewis J, McClements W, Ponticello G, Radzilowski E, Smith G, Tebben A, Wolfe A (1994) Antimicrob Agents Chemother 38:2827–2837PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hastings JC, Selnick H, Wolanski B, Tomassini JE (1996) Antimicrob Agents Chemother 40:1304–1307PubMedCentralPubMedGoogle Scholar
  20. 20.
    Stevaert A, Nurra S, Pala N, Carcelli M, Rogolino D, Shepard C, Domaoal RA, Kim B, Alfonso-Prieto M, Marras SAE, Sechi M, Naesens L (2015) Mol Pharmacol 87:323–337CrossRefPubMedGoogle Scholar
  21. 21.
    Singh SB (1995) Tetrahedron Lett 36:2009–2012CrossRefGoogle Scholar
  22. 22.
    Carcelli M, Rogolino D, Bacchi A, Rispoli G, Fisicaro E, Compari C, Sechi M, Stevaert A, Naesens L (2014) Mol Pharm 11:304–316CrossRefPubMedGoogle Scholar
  23. 23.
    Parkes KEB, Ermert P, Fässler J, Ives J, Martin JA, Merrett JH, Obrecht D, Williams G, Klumpp K (2003) J Med Chem 46:1153–1164CrossRefPubMedGoogle Scholar
  24. 24.
    Sagong HY, Parhi A, Bauman JD, Patel D, Vijayan RS, Das K, Arnold E, LaVoie EJ (2013) ACS Med Chem Lett 4:547–550PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Knox JJ, Hotte SJ, Kollmannsberger C, Winquist E, Fisher B, Eisenhauer EA (2007) Invest New Drugs 25:471–477CrossRefPubMedGoogle Scholar
  26. 26.
    Kang IJ, Wang LW, Hsu TA, Yueh A, Lee CC, Lee YC, Lee CY, Chao YS, Shih SR, Chern JH (2011) Bioorg Med Chem Lett 21:1948–1952CrossRefPubMedGoogle Scholar
  27. 27.
    Quenelle DC, Keith KA, Kern ER (2006) Antiv Res 71:24–30CrossRefGoogle Scholar
  28. 28.
    Debebe Z, Ammosova T, Breuer D, Lovejoy DB, Kalinowski DS, Kumar K, Jerebtsova M, Ray P, Kashanchi F, Gordeuk VR, Richardson DR, Nekhai S (2011) Mol Pharmacol 79:185–196PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Pelosi G, Bisceglie F, Bignami F, Ronzi P, Schiavone P, Re MC, Casoli C, Pilotti E (2010) J Med Chem 53:8765–8769CrossRefPubMedGoogle Scholar
  30. 30.
    Torti SV, Torti FM (2013) Nat Rev Cancer 13:342–355PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Pelosi G (2010) Open Crystallogr J 3:16–28CrossRefGoogle Scholar
  32. 32.
    Sacconi L (1954) Z Anorg Allg Chem 275:249–256CrossRefGoogle Scholar
  33. 33.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341CrossRefGoogle Scholar
  34. 34.
    Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Siliqi D, Spagna R (2007) J Appl Cryst 40:609–613CrossRefGoogle Scholar
  35. 35.
    Sheldrick GM (2008) Acta Cryst A64:112–122CrossRefGoogle Scholar
  36. 36.
    Nardelli M (1995) J Appl Cryst 28:659CrossRefGoogle Scholar
  37. 37.
    Allen FH, Kennard O, Taylor R (1983) Acc Chem Res 16:146–153CrossRefGoogle Scholar
  38. 38.
    Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) Acta Crystallogr B 58:389–397CrossRefPubMedGoogle Scholar
  39. 39.
    Meneghesso S, Vanderlinden E, Stevaert A, McGuigan C, Balzarini J, Naesens L (2012) Antiviral Res 94:35–43CrossRefPubMedGoogle Scholar
  40. 40.
    Stevaert A, Dallocchio R, Dessì R, Pala N, Rogolino D, Sechi M, Naesens L (2013) J Virol 87:10524–10538PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Kim M, Kim SY, Lee HW, Shin JS, Kim P, Jung YS, Jeong HS, Hyun JK, Lee CK (2013) Antiviral Res 100:460–472CrossRefPubMedGoogle Scholar
  42. 42.
    Reed LJ, Muench H (1938) Am J Epidemiol 27:493–497Google Scholar
  43. 43.
    Vanderlinden E, Göktas F, Cesur Z, Froeyen M, Reed ML, Russell CJ, Cesur N, Naesens L (2010) J Virol 84:4277–4288PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727CrossRefPubMedGoogle Scholar
  45. 45.
    Gong Q, Menon L, Ilina T, Miller LG, Ahn J, Parniak MA, Ishima R (2011) Chem Biol Drug Des 77:39–47PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Enyedy ÉA, Zsigó É, Nagy NV, Kowol CR, Roller A, Keppler BK, Kiss T (2012) Eur J Inorg Chem 2012(25):4036–4047Google Scholar
  47. 47.
    Lobana TS, Kumari P, Hundal G, Butcher RJ (2010) Polyhedron 29:1130–1136CrossRefGoogle Scholar
  48. 48.
    Chellan P, Stringer T, Shokar A, Dornbush PJ, Vazquez-Anaya G, Land KM, Chibale K, Smith GS (2011) J Inorg Biochem 105:1562–1568CrossRefPubMedGoogle Scholar
  49. 49.
    Ramachandran E, Kalaivani P, Prabhakaran R, Rath NP, Brinda S, Poornima P, Padma VV, Natarajan K (2012) Metallomics 4:218–227CrossRefPubMedGoogle Scholar
  50. 50.
    Kalaivani P, Prabhakaran R, Dallemer F, Poornima P, Vaishnavi E, Ramachandran E, Padma VV, Renganathan R, Natarajan K (2012) Metallomics 4:101–113CrossRefPubMedGoogle Scholar
  51. 51.
    West DX, Salberg MM, Bain GA, Liberta AE, Valdés-Martínez J, Hernández Ortega S (1996) Transit Met. Chem. 21:206–212Google Scholar
  52. 52.
    Sahadev RKS, Sindhwani SK (1992) Thermochim Acta 202:291–299CrossRefGoogle Scholar
  53. 53.
    Laskowski RA, Swindells MB (2011) J Chem Inf Mod 51:2778CrossRefGoogle Scholar
  54. 54.
    Yang ZF, Bai LP, Huang WB, Li XZ, Zhao SS, Zhong NS, Jiang ZH (2014) Fitoterapia 93:47–53CrossRefPubMedGoogle Scholar
  55. 55.
    Martin DP, Blachly PG, McCammon JA, Cohen SM (2014) J Med Chem 57:7126–7135PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Rogolino D, Carcelli M, Bacchi A, Compari C, Contardi L, Fisicaro E, Gatti A, Sechi M, Stevaert A, Naesens L (2015) J Inorg Biochem 150:9–17CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2015

Authors and Affiliations

  • Dominga Rogolino
    • 1
  • Alessia Bacchi
    • 1
  • Laura De Luca
    • 2
  • Gabriele Rispoli
    • 1
  • Mario Sechi
    • 3
  • Annelies Stevaert
    • 4
  • Lieve Naesens
    • 4
  • Mauro Carcelli
    • 1
  1. 1.Dipartimento di ChimicaUniversità di ParmaParmaItaly
  2. 2.Dipartimento di Scienze del Farmaco e Prodotti per la SaluteUniversità di Messina, Polo Universitario SS. AnnunziataMessinaItaly
  3. 3.Dipartimento di Chimica e FarmaciaUniversità di SassariSassariItaly
  4. 4.Rega Institute for Medical ResearchKU LeuvenLouvainBelgium

Personalised recommendations