Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 20, Issue 6, pp 921–933 | Cite as

Lysozyme stability and amyloid fibrillization dependence on Hofmeister anions in acidic pH

  • Slavomíra Poniková
  • Andrea Antošová
  • Erna Demjén
  • Dagmar Sedláková
  • Jozef Marek
  • Rastislav Varhač
  • Zuzana GažováEmail author
  • Erik SedlákEmail author
Original Paper

Abstract

We have explored an effect of Hofmeister anions, Na2SO4, NaCl, NaBr, NaNO3, NaSCN and NaClO4, on stability and amyloid fibrillization of hen egg white lysozyme at pH 2.7. The stability of the protein was analyzed by differential scanning calorimetry. The Hofmeister effect of the anions was assessed by the parameter dT trs/d[anion] (T trs, transition temperature). We show that dT trs/d[anion] correlates with anion surface tension effects and anion partition coefficients indicating direct interactions between anions and lysozyme. The kinetic of amyloid fibrillization of lysozyme was followed by Thioflavin T (ThT) fluorescence. Negative correlation between dT trs/d[anion] and the nucleation rate of fibrillization in the presence of monovalent anions indicates specific effect of anions on fibrillization rate of lysozyme. The efficiency of monovalent anions to accelerate fibrillization correlates with inverse Hofmeister series. The far-UV circular dichroism spectroscopy and atomic force microscopy findings show that conformational properties of fibrils depend on fibrillization rate. In the presence of sodium chloride, lysozyme forms typical fibrils with elongated structure and with the secondary structure of the β-sheet. On the other hand, in the presence of both chaotropic perchlorate and kosmotropic sulfate anions, the fibrils form clusters with secondary structure of β-turn. Moreover, the acceleration of fibril formation is accompanied by decreased amount of the formed fibrils as indicated by ThT fluorescence. Taken together, our study shows Hofmeister effect of monovalent anions on: (1) lysozyme stability; (2) ability to accelerate nucleation phase of lysozyme fibrillization; (3) amount, and (4) conformational properties of the formed fibrils.

Keywords

Protein stability Acidic protein Hofmeister series Fibrillization kinetics 

Notes

Acknowledgments

This work was supported by research grants from the Slovak Grant Agency VEGA (Projects No. 1/0521/12, 2/0181/13, 2/0175/14), from Slovak Research and Development Agency (Project APVV 0526-11), ESF 26220220005, and from CELIM (316310) funded by 7FP EU (REGPOT). We also thank Ivana Petrenčáková for her editorial help in preparing the manuscript.

Supplementary material

775_2015_1276_MOESM1_ESM.pdf (220 kb)
Supplementary material 1 (PDF 219 kb)

References

  1. 1.
    Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CC, Pepys MB (1997) Nature 385:787–793CrossRefPubMedGoogle Scholar
  2. 2.
    Tan SY, Pepys MP (1994) Histopathology 25:403–414CrossRefPubMedGoogle Scholar
  3. 3.
    Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, Feest TG, Zalin AM, Hsuan JJ (1963) Nature 362:553–557CrossRefGoogle Scholar
  4. 4.
    Morozova-Roche LA, Zurdo J, Spencer A, Noppe W, Receveur V, Archer DB, Joniau M, Dobson CM (2000) J Struct Biol 130:339–351CrossRefPubMedGoogle Scholar
  5. 5.
    Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, Zurdo J, Robinson CV, Dobson CM (2000) J Mol Biol 300:541–549CrossRefPubMedGoogle Scholar
  6. 6.
    Arnaudov LN, de Vries R (2005) Biophys J 8:515–526CrossRefGoogle Scholar
  7. 7.
    Redfield C, Dobson CM (1988) Biochemistry 27:122–136CrossRefPubMedGoogle Scholar
  8. 8.
    Radford SE, Dobson CM, Evans PA (1992) Nature 358:302–307CrossRefPubMedGoogle Scholar
  9. 9.
    Itzhaki LS, Evans PA, Dobson CM, Radford SE (1994) Biochemistry 33:5212–5520CrossRefPubMedGoogle Scholar
  10. 10.
    Goda S, Takano K, Yamagata Y, Nagata R, Akutsu H, Maki S, Namba K, Yutani K (2000) Protein Sci 9:369–375PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Tanaka S, Oda Y, Ataka M, Onuma K, Fujiwara S, Yonezawa Y (2001) Biopolymers 59:370–379CrossRefPubMedGoogle Scholar
  12. 12.
    Yonezawa Y, Tanaka S, Kubota T, Wakabayashi K, Yutani K, Fujiwara S (2002) J Mol Biol 323:237–251CrossRefPubMedGoogle Scholar
  13. 13.
    Cao A, Hu D, Lai L (2004) Protein Sci 13:319–324PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Blake CCF, Koenig DF, Mair GA, Sarma R (1965) Nature 206:757–761CrossRefPubMedGoogle Scholar
  15. 15.
    Kuehner DE, Engmann J, Fergg F, Wernick M, Blanch HW, Prausnitz JM (1999) J Phys Chem B 103:1368–1374CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Cremer PS (2009) Proc Natl Acad Sci USA 106:15249–15253PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Privalov PL, Khechinashvili NN (1974) J Mol Biol 86:665–684CrossRefPubMedGoogle Scholar
  18. 18.
    Bye JW, Falconer RJ (2013) Protein Sci 22:1563–1570PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hofmeister F (1888) Arch Exp Pathol Pharmacol 24:247–260CrossRefGoogle Scholar
  20. 20.
    Kunz W, Henle J, Ninham BW (2004) Curr Opin Colloid Interface Sci 9:19–37CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Cremer PS (2010) Annu Rev Phys Chem 61:63–83CrossRefPubMedGoogle Scholar
  22. 22.
    Parsons DF, Boström M (2011) Lo Nostro P, Ninham BW. Phys Chem Chem Phys 13:12352–12367CrossRefPubMedGoogle Scholar
  23. 23.
    Lo Nostro P, Ninham BW (2012) Chem Rev 112:2286–2322Google Scholar
  24. 24.
    Collins KD (2012) Biophys Chem 167:43–59CrossRefPubMedGoogle Scholar
  25. 25.
    Record MT Jr, Guinn E, Pegram L, Capp M (2013) Faraday Discuss 160:9–44PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Salis A, Ninham BW (2014) Chem Soc Rev 43:7358–7377CrossRefPubMedGoogle Scholar
  27. 27.
    Jungwirth P, Tobias DJ (2002) J Phys Chem B 106:6361–6373CrossRefGoogle Scholar
  28. 28.
    Jungwirth P, Tobias DJ (2006) Chem Rev 109:1259–1281CrossRefGoogle Scholar
  29. 29.
    Pegram LM, Record MT (2006) Proc Natl Acad Sci USA 103:14278–14281PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Pegram LM, Record MT (2007) J Phys Chem B 111:5411–5417CrossRefPubMedGoogle Scholar
  31. 31.
    Pegram LM, Record MT (2008) J Phys Chem B 112:9428–9436PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Collins KD (2006) Biophys Chem 119:271–281CrossRefPubMedGoogle Scholar
  33. 33.
    Flores SC, Kherb J, Cremer PS (2012) J Phys Chem C 116:11408–14413CrossRefGoogle Scholar
  34. 34.
    Bogár F, Bartha F, Násztor Z, Fábián L, Leitgeb B, Dér A (2014) J Phys Chem B 118:8496–8504CrossRefPubMedGoogle Scholar
  35. 35.
    Buell AK, Hung P, Salvatella X, Welland ME, Dobson CM, Knowles TP (2013) Biophys J 104:1116–1126PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Jain S, Udgaonkar JB (2010) Biochemistry 49:7615–7624CrossRefPubMedGoogle Scholar
  37. 37.
    Pedersen JS, Flink JM, Dikov D, Otzen DE (2006) Biophys J 90:4181–4194PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Zurdo J, Guijarro JI, Jiménez JL, Saibil HR, Dobson CM (2001) J Mol Biol 311:325–340CrossRefPubMedGoogle Scholar
  39. 39.
    Marek PJ, Patsalo V, Green DF, Raleigh DP (2012) Biochemistry 51:8478–8490PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Klement K, Wieligmann K, Meinhardt J, Hortschansky P, Richter W, Fändrich M (2007) J Mol Biol 373:1321–1333CrossRefPubMedGoogle Scholar
  41. 41.
    Campioni S, Mannini B, López-Alonso JP, Shalova IN, Penco A, Mulvihill E, Laurents DV, Relini A, Chiti F (2012) J Mol Biol 424:132–149CrossRefPubMedGoogle Scholar
  42. 42.
    Ruzafa D, Conejero-Lara F, Morel B (2013) Phys Chem Chem Phys 15:15508–15517CrossRefPubMedGoogle Scholar
  43. 43.
    Owczarz M, Arosio P (2014) Biophys J 107:197–207PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Raman B, Chatani E, Kihara M, Ban T, Sakai M, Hasegawa K, Naiki H, Rao CM, Goto Y (2005) Biochemistry 44:1288–1299CrossRefPubMedGoogle Scholar
  45. 45.
    Campos LA, Sancho J (2006) Proteins 63:581–594CrossRefPubMedGoogle Scholar
  46. 46.
    Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Biochemistry 40:6036–6046CrossRefPubMedGoogle Scholar
  47. 47.
    Baldwin RL (1996) Biophys J 71:2056–2063PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Sedlák E, Stagg L, Wittung-Stafshede P (2008) Arch Biochem Biophys 479:69–73CrossRefPubMedGoogle Scholar
  49. 49.
    LeVine H (1995) Int J Exp Clin Invest 2:1–6Google Scholar
  50. 50.
    Biancalana M, Koide S (2010) Biochim Biophys Acta 1804:1405–1412PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Urry DW, Long MM, Ohnishi T, Jacobs M (1974) Biochem Biophys Res Commun 61:1427–1433CrossRefPubMedGoogle Scholar
  52. 52.
    Bush CA, Sarkar SK, Kopple KD (1978) Biochemistry 17:4951–4954CrossRefPubMedGoogle Scholar
  53. 53.
    Privalov PL, Griko YV, Venyaminov SY, Kutyshenko VP (1986) J Mol Biol 190:487–498CrossRefPubMedGoogle Scholar
  54. 54.
    Pedersen JS, Dikov D, Flink JL, Hjuler HA, Christiansen G, Otzen DE (2006) J Mol Biol 355:501–523CrossRefPubMedGoogle Scholar
  55. 55.
    Omta AW, Kropman MF, Woutersen S, Bakker HJ (2003) Science 301:347–349CrossRefPubMedGoogle Scholar
  56. 56.
    Batchelor JD, Olteanu A, Tripathy A, Pielak GJ (2004) J Am Chem Soc 126:1958–1961CrossRefPubMedGoogle Scholar
  57. 57.
    Näslund LA, Edwards DC, Wernet P, Bergmann U, Ogasawara H, Pettersson LG, Myneni S, Nilsson A (2005) J Phys Chem A 109:5995–6002CrossRefPubMedGoogle Scholar
  58. 58.
    Chen X, Yang T, Kataoka S, Cremer PS (2007) J Am Chem Soc 129:12272–12279CrossRefPubMedGoogle Scholar
  59. 59.
    Guest WL, Lewis WCM (1939) Proc R Soc Lond A 170:501–513CrossRefGoogle Scholar
  60. 60.
    Aveyard R, Saleem SM (1976) J Chem Soc Farad Trans 72:1609–1617CrossRefGoogle Scholar
  61. 61.
    Holz M, Grunder R, Sacco A, Meleleo A (1993) J Chem Soc, Faraday Trans 89:1215–1222CrossRefGoogle Scholar
  62. 62.
    Sacco A, De Cillis FM, Holz M (1998) J Chem Soc Faraday Trans 94:2089–2092CrossRefGoogle Scholar
  63. 63.
    Chang TM, Dang LX (2006) Chem Rev 106:1305–1322CrossRefPubMedGoogle Scholar
  64. 64.
    Funahashi J, Takano K, Ogasahara K, Yamagata Y, Yutani K (1996) J Biochem 120:1216–1223CrossRefPubMedGoogle Scholar
  65. 65.
    Canet D, Last AM, Tito P, Sunde M, Spencer A, Archer DB, Redfield C, Robinson CV, Dobson CM (2002) Nat Struct Biol 9:308–315CrossRefPubMedGoogle Scholar
  66. 66.
    Buell AK, Dhulesia A, Mossuto MF, Cremades N, Kumita JR, Dumoulin M, Welland ME, Knowles TP, Salvatella X, Dobson CM (2011) J Am Chem Soc 133:7737–7743CrossRefPubMedGoogle Scholar
  67. 67.
    Frare E, De Laureto PP, Zurdo J, Dobson CM, Fontana A (2004) J Mol Biol 340:1153–1165CrossRefPubMedGoogle Scholar
  68. 68.
    Uversky VN, Fink AL (2004) Biochim Biophys Acta 1698:131–153CrossRefPubMedGoogle Scholar
  69. 69.
    Gokarn YR, Fesinmeyer RM, Saluja A, Razinkov V, Chase SF, Laue TM, Brems DN (2011) Protein Sci 20:580–587PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Möller J, Grobelny S, Schulze J, Steffen A, Bieder S, Paulus M, Tolan M, Winter R (2014) Phys Chem Chem Phys 16:7423–7429CrossRefPubMedGoogle Scholar
  71. 71.
    Goto Y, Calciano LJ, Fink AL (1990) Proc Natl Acad Sci USA 87:573–577PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Gjerde DT, Schmuckler G, Fritz JS (1980) J Chromatogr 187:35–45CrossRefGoogle Scholar
  73. 73.
    Gregor HP, Belle J, Marcus RA (1955) J Am Chem Soc 77:2713–2719CrossRefGoogle Scholar
  74. 74.
    Boström M, Parsons DF, Salis A, Ninham BW, Monduzzi M (2011) Langmuir 27:9504–9511CrossRefPubMedGoogle Scholar
  75. 75.
    Parmar AS, Muschol M (2009) Biophys J 97:590–598PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Marcus Y (1997) Ion Properties. Marcel Dekker, New YorkGoogle Scholar

Copyright information

© SBIC 2015

Authors and Affiliations

  • Slavomíra Poniková
    • 1
  • Andrea Antošová
    • 1
  • Erna Demjén
    • 1
  • Dagmar Sedláková
    • 1
  • Jozef Marek
    • 1
  • Rastislav Varhač
    • 2
  • Zuzana Gažová
    • 1
    Email author
  • Erik Sedlák
    • 2
    • 3
    Email author
  1. 1.Department of Biophysics, Institute of Experimental Physics Slovak Academy of SciencesKošiceSlovakia
  2. 2.Department of Biochemistry, P.J. Šafárik UniversityKošiceSlovakia
  3. 3.Centre for Interdisciplinary Biosciences, P.J. Šafárik UniversityKošiceSlovakia

Personalised recommendations