Advertisement

The aerobic CO dehydrogenase from Oligotropha carboxidovorans

  • Russ HilleEmail author
  • Stephanie Dingwall
  • Jarett Wilcoxen
Minireview
Part of the following topical collections:
  1. Topical Issue on Molybdenum and Tungsten Enzymes: from Biology to Chemistry and Back

Abstract

We review here the recent literature dealing with the molybdenum- and copper-dependent CO dehydrogenase, with particular emphasis on the structure of the enzyme and recent advances in our understanding of the reaction mechanism of the enzyme.

Keywords

CO dehydrogenase Molybdenum Electron paramagnetic resonance Electron-nuclear double resonance 

Notes

Acknowledgments

Work in the corresponding author’s laboratory is supported by the US Department of Energy (Grant DE-FG02-13ER16411).

References

  1. 1.
    Meyer O, Frunzke K, Mörsdorf G (1993) In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds, Intercept Press, Andover, pp 433–459Google Scholar
  2. 2.
    Jacobitz S, Meyer O (1989) J Bacteriol 171:6294–6299PubMedCentralPubMedGoogle Scholar
  3. 3.
    Cypionka H, Meyer O (1983) J Bacteriol 156:1178–1187PubMedCentralPubMedGoogle Scholar
  4. 4.
    Moxley JM, Smith KA (1998) Soil Biol Biochem 30:65–79CrossRefGoogle Scholar
  5. 5.
    Moersdorf G, Frunzke K, Gadkari D, Meyer O (1992) Biodegradation 3:61–82Google Scholar
  6. 6.
    Ragsdale SW, Kumar M (1996) Chem Rev 96:2515–2539CrossRefPubMedGoogle Scholar
  7. 7.
    Kraut M, Hugendieck I, Herwig S, Meyer O (1989) Arch Microbiol 152:335–341CrossRefPubMedGoogle Scholar
  8. 8.
    Kang BS, Kim YM (1999) J Bacteriol 181:5581–5590PubMedCentralPubMedGoogle Scholar
  9. 9.
    Santiago B, Schubel U, Egelseer C, Meyer O (1999) Gene 236:115–124CrossRefPubMedGoogle Scholar
  10. 10.
    Matthies A, Rajagopalan KV, Mendel RR, Leimkuhler S (2004) Proc Natl Acad Sci USA 101:5946–5951CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Neumann M, Schulte M, Junemann N, Stocklein W, Leimkuhler S (2006) J Biol Chem 281:15701–15708CrossRefPubMedGoogle Scholar
  12. 12.
    Schumann S, Saggu M, Moller N, Anker SD, Lendzian F et al (2008) J Biol Chem 283:16602–16611CrossRefPubMedGoogle Scholar
  13. 13.
    Pelzmann A, Ferner M, Gnida M, Meyer-Klaucke W, Maisel T, Meyer O (2009) J Biol Chem 284:9578–9586CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Spreitler F, Brock C, Pelzmann A, Meyer O, Koehler J (2010) ChemBioChem 11:2419–2423CrossRefPubMedGoogle Scholar
  15. 15.
    Dobbek H, Gremer L, Meyer O, Huber R (1999) Proc Natl Acad Sci USA 96:8884–8889CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Hanzelmann P, Dobbek H, Gremer L, Huber R, Meyer O (2000) J Mol Biol 301:1221–1235CrossRefPubMedGoogle Scholar
  17. 17.
    Enroth C, Eger BT, Okamoto K, Nishino T, Pai EF (2000) Proc Natl Acad Sci USA 97:10723–10728CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Hille R (1996) Chem Rev 96:2757–2816CrossRefPubMedGoogle Scholar
  19. 19.
    Hille R, Hall J, Basu P (2014) Chem Rev 114:3963–4038CrossRefPubMedGoogle Scholar
  20. 20.
    Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Proc Natl Acad Sci USA 99:15971–15976CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Meyer-Klaucke W, Gnida M, Ferner R, Gremer L, Meyer O (2001) J Inorg Biochem 86:339Google Scholar
  22. 22.
    Zhang B, Hemann CF, Hille R (2010) J Biol Chem 285:12571–12578CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Maragliano L, Cottone G, Ciccotti G, Vanden-Eijnden E (2010) J Am Chem Soc 132:1010–1017CrossRefPubMedGoogle Scholar
  24. 24.
    Kreß O, Gnida M, Pelzmann AM, Marx C, Meyer-Klaucke W, Meyer O (2014) Biochem Biophys Res Commun 447:413–418CrossRefPubMedGoogle Scholar
  25. 25.
    Gourlay C, Nielsen DJ, White JM, Knottenbelt SZ, Kirk ML, Young CG (2006) J Am Chem Soc 128:2164–2165CrossRefPubMedGoogle Scholar
  26. 26.
    Shanmugam M, Wilcoxen J, Habel-Rodriguez D, Cutsail GEI, Kirk ML et al (2013) J Am Chem Soc 135:17775–17782CrossRefPubMedGoogle Scholar
  27. 27.
    Bray RC, Palmer G, Beinert H (1964) J Biol Chem 239:2667PubMedGoogle Scholar
  28. 28.
    Bray RC, Vanngard T (1969) Biochem J 114:725PubMedCentralPubMedGoogle Scholar
  29. 29.
    Hille R, Kim JH, Hemann C (1993) Biochemistry 32:3973–3980CrossRefPubMedGoogle Scholar
  30. 30.
    Siegbahn PEM, Shestakov AF (2005) J Comput Chem 26:888–898CrossRefPubMedGoogle Scholar
  31. 31.
    Hofmann M, Kassube JK, Graf T (2005) J Biol Inorg Chem 10:490–495CrossRefPubMedGoogle Scholar
  32. 32.
    Hille R, Sprecher H (1987) J Biol Chem 262:10914–10917PubMedGoogle Scholar
  33. 33.
    Stein BW, Kirk ML (2014) Chem Commun (Camb, Engl) 50:1104–1106Google Scholar
  34. 34.
    Wang N, Wang M, Chen L, Sun L (2013) Dalton Trans 42:12059–12071CrossRefPubMedGoogle Scholar
  35. 35.
    Frohman DJ, Grubbs GS II, Yu Z, Novick SE (2013) Inorg Chem 52:816–822CrossRefPubMedGoogle Scholar
  36. 36.
    Hulley EB, Welch KD, Appel AM, DuBois DL, Bullock RM (2013) J Am Chem Soc 135:11736–11739CrossRefPubMedGoogle Scholar
  37. 37.
    Resch M, Dobbek H, Meyer O (2005) J Biol Inorg Chem 10:518–528CrossRefPubMedGoogle Scholar
  38. 38.
    Wilcoxen J, Snider S, Hille R (2011) J Am Chem Soc 133:12934–12936CrossRefPubMedGoogle Scholar
  39. 39.
    Wilcoxen J, Zhang B, Hille R (2011) Biochemistry 50:1910–1916CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Massey V, Palmer G (1966) Biochemistry 5:3181CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  • Russ Hille
    • 1
    Email author
  • Stephanie Dingwall
    • 1
  • Jarett Wilcoxen
    • 1
  1. 1.Department of BiochemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations