JBIC Journal of Biological Inorganic Chemistry

, Volume 19, Issue 8, pp 1263–1275 | Cite as

Comparative investigation of the reaction mechanisms of the organophosphate-degrading phosphotriesterases from Agrobacterium radiobacter (OpdA) and Pseudomonas diminuta (OPH)

  • Marcelo M. Pedroso
  • Fernanda Ely
  • Nataša Mitić
  • Margaret C. Carpenter
  • Lawrence R. Gahan
  • Dean E. Wilcox
  • James L. Larrabee
  • David L. Ollis
  • Gerhard Schenk
Original Paper


Metal ion-dependent, organophosphate-degrading enzymes have acquired increasing attention due to their ability to degrade and thus detoxify commonly used pesticides and nerve agents such as sarin. The best characterized of these enzymes are from Pseudomonas diminuta (OPH) and Agrobacterium radiobacter (OpdA). Despite high sequence homology (>90 % identity) and conserved metal ion coordination these enzymes display considerable variations in substrate specificity, metal ion affinity/preference and reaction mechanism. In this study, we highlight the significance of the presence (OpdA) or absence (OPH) of an extended hydrogen bond network in the active site of these enzymes for the modulation of their catalytic properties. In particular, the second coordination sphere residue in position 254 (Arg in OpdA, His in OPH) is identified as a crucial factor in modulating the substrate preference and binding of these enzymes. Inhibition studies with fluoride also support a mechanism for OpdA whereby the identity of the hydrolysis-initiating nucleophile changes as the pH is altered. The same is not observed for OPH.


Binding affinity Calorimetry Enzyme kinetics Magnetic circular dichroism Site-directed mutagenesis 



This work is financially supported by the Australian Research Council, Discovery Projects Scheme (DP120104263). G. S. also acknowledges the receipt of an ARC Future Fellowship (FT120100694). M. P. is supported by an International Postgraduate Research Scholarship and University of Queensland International Living Allowance Scholarship. J. A. L. and D. E. W. thank the National Science Foundation (USA) for financial support from grants CHE0848433, CHE1303852, and CHE0820965 (MCD instrument) to J. A. L. and CHE1308598 to D. E. W. N. M. would like to thank the Science Foundation Ireland for financial support in form of a President of Ireland Young Researcher Award (SFI-PIYRA).

Supplementary material

775_2014_1183_MOESM1_ESM.pdf (286 kb)
Supplementary material 1 (PDF 286 kb)


  1. 1.
    Block RM, Dragun J, Kalinowski TW (1984) Groundwater contamination. 2. Health and enviromental aspects of setting cleanup criteria. Chem Eng 91:70–73Google Scholar
  2. 2.
    Dragun J, Kuffner AC, Schneiter RW (1984) Groundwater contamination. 1. Transport and transformation of organic-chemicals. Chem Eng 91:65–70Google Scholar
  3. 3.
    Satoh T, Hosokawa M (2000) Organophosphates and their impact on the global environment. Neurotoxicology. 21:223–227PubMedGoogle Scholar
  4. 4.
    Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471PubMedCrossRefGoogle Scholar
  5. 5.
    McLoughlin SY, Jackson C, Liu J-W, Ollis DL (2004) Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Appl Environ Microbiol. 70:404–412PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Harper LL, McDaniel CS, Miller CE, Wild JR (1988) Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl Environ Microbiol 54:2586–2589PubMedCentralPubMedGoogle Scholar
  7. 7.
    Yang H, Carr PD, McLoughlin SY, Liu JW, Horne I, Qiu X, Jeffries CMJ, Russell RJ, Oakeshott JG, Ollis DL (2003) Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Protein Eng 16:135–145PubMedCrossRefGoogle Scholar
  8. 8.
    Sutherland TD, Horne I, Weir KM, Coppin CW, Williams MR, Selleck M, Russell RJ, Oakeshott JG (2004) Enzymatic bioremediation: from the enzyme discovery to applications. Clin Exp Pharmacol Physiol 31:817–821PubMedCrossRefGoogle Scholar
  9. 9.
    Ely F, Foo J-L, Jackson CJ, Gahan LR, Ollis DL, Schenk G (2007) Enzymatic bioremediation: organophosphate degradation by binuclear metallo-hydrolases. Curr Top Biochem Res. 9:63–78Google Scholar
  10. 10.
    Ely F, Hadler KS, Gahan LR, Guddat LW, Ollis DL, Schenk G (2010) The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis. Biochem J 432:565–573PubMedCrossRefGoogle Scholar
  11. 11.
    Schenk G, Mitić N, Gahan LR, Ollis DL, McGeary RP, Guddat LW (2012) Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction. Acc Chem Res 45:1593–1603PubMedCrossRefGoogle Scholar
  12. 12.
    Aubert SD, Li Y, Raushel FM (2004) Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 43:5707–5715PubMedCrossRefGoogle Scholar
  13. 13.
    Wu F, Li W-S, Chen-Goodspeed M, Sogorb MA, Raushel FM (2000) Rationally engineered mutants of phosphotriesterase for preparative scale isolation of chiral organophosphates. J Am Chem Soc 122:10206–10207CrossRefGoogle Scholar
  14. 14.
    Hong S-B, Raushel FM (1996) Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Biochemistry 35:10904–10912PubMedCrossRefGoogle Scholar
  15. 15.
    Raushel FM, Holden HM (2000) Phosphotriesterase: an enzyme in search of its natural substrate. Adv Enzymol Relat Areas Mol Biol 74:51–73PubMedGoogle Scholar
  16. 16.
    Samples CR, Howard T, Raushel FM, DeRose VJ (2005) Protonation of the binuclear metal center within the active site of phosphotriesterase. Biochemistry 44:11005–11013PubMedCrossRefGoogle Scholar
  17. 17.
    Ely F, Hadler KS, Mitic N, Gahan L, Ollis DL, Larrabee JA, Schenk G (2011) Electronic and geometric structure of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA). J Biol Inorg Chem 16:777–787PubMedCrossRefGoogle Scholar
  18. 18.
    Omburo G, Kuo J, Mullins L, Raushel F (1992) Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem 267:13278–13283PubMedGoogle Scholar
  19. 19.
    Ely F, Pedroso MM, Gahan LR, Ollis DL, Guddat LW, Schenk G (2012) Phosphate-bound structure of an organophosphate-degrading enzyme from Agrobacterium radiobacter. J Inorg Biochem 106:19–22PubMedCrossRefGoogle Scholar
  20. 20.
    Foo J-L, Jackson CJ, Carr PD, Kim H-K, Schenk G, Gahan LR, Ollis DL (2010) Mutation of outer-shell residues modulates metal ion co-ordination strength in a metalloenzyme. Biochem J 429:313–321PubMedCrossRefGoogle Scholar
  21. 21.
    MicroCal (2004) ITC data analysis in origin—tutorial guide. MicroCalorimeter User`s Manual, NorthamptonGoogle Scholar
  22. 22.
    Lin LN, Mason AB, Woodworth RC, Brandts JF (1991) Calorimetric studies of the binding of ferric ions to ovotransferrin and interactions between binding sites. Biochemistry 30:11660–11669PubMedCrossRefGoogle Scholar
  23. 23.
    Lin LN, Mason AB, Woodworth RC, Brandts JF (1993) Calorimetric studies of the binding of ferric ions to human serum transferrin. Biochemistry 32:9398–9406PubMedCrossRefGoogle Scholar
  24. 24.
    Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, USAGoogle Scholar
  25. 25.
    Thermo Scientific, Grams/AI 9.0 Software (2009)Google Scholar
  26. 26.
    Shim H, Raushel FM (2000) Self-assembly of the binuclear metal center of phosphotriesterase. Biochemistry 39:7357–7364PubMedCrossRefGoogle Scholar
  27. 27.
    Carpenter MC, Wilcox DE (2014) Thermodynamics of formation of the insulin hexamer: metal-stabilized proton-coupled assembly of quaternary structure. Biochemistry 53:1296–1301PubMedCrossRefGoogle Scholar
  28. 28.
    Grossoehme NE, Spuches AM, Wilcox DE (2010) Application of isothermal titration calorimetry in bioinorganic chemistry. J Biol Inorg Chem 15:1183–1191PubMedCrossRefGoogle Scholar
  29. 29.
    Sigurskjold BW (2000) Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 277:260–266PubMedCrossRefGoogle Scholar
  30. 30.
    Smith RM, Martell AE, Motekaitis RJ (2004) NIST critically selected stability constants of metal complexes database. Standard Reference Data 46Google Scholar
  31. 31.
    Adamsky H, Schonherr T, Atanasov M (2004) AOMX: angular overlap model computation. Elsevier, OxfordGoogle Scholar
  32. 32.
    Schonherr T, Artanasov M, Adamsky H (2004) AOMX: angular overlap model computation. In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 2. Elsevier, Oxford, pp 443–455CrossRefGoogle Scholar
  33. 33.
    Kaden TA, Holmquist B, Vallee BL (1972) Magnetic circular dichroism of cobalt metalloenzyme derivatives. Biochem Biophys Res Commun. 46:1654–1659PubMedCrossRefGoogle Scholar
  34. 34.
    Larrabee JA, Leung CH, Moore RL, Thamrong-nawasawat T, Wessler BSH (2004) Magnetic circular dichroism and cobalt(II) binding equilibrium studies of Escherichia coli methionyl aminopeptidase. J Am Chem Soc 126:12316–12324PubMedCrossRefGoogle Scholar
  35. 35.
    Larrabee JA, Alessi CM, Asiedu ET, Cook JO, Hoerning KR, Klingler LJ, Okin GS, Santee SG, Volkert TL (1997) Magnetic circular dichroism spectroscopy as a probe of geometric and electronic structure of cobalt(II)-substituted proteins: ground-state zero-field splitting as a coordination number indicator. J Am Chem Soc 119:4182–4196CrossRefGoogle Scholar
  36. 36.
    Hadler KS, Mitic N, Yip SH-C, Gahan LR, Ollis DL, Schenk G, Larrabee JA (2010) Electronic structure analysis of the dinuclear metal center in the bioremediator glycerophosphodiesterase (GpdQ) from enterobacter aerogenes. Inorg Chem 49:2727–2734PubMedCrossRefGoogle Scholar
  37. 37.
    Hadler KS, Tanifum EA, Yip SH-C, Mitic N, Guddat LW, Jackson CJ, Gahan LR, Nguyen K, Carr PD, Ollis DL, Hengge AC, Larrabee JA, Schenk G (2008) Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes. J Am Chem Soc 130:14129–14138PubMedCrossRefGoogle Scholar
  38. 38.
    Johansson FB, Bond AD, Nielsen UG, Moubaraki B, Murray KS, Berry KJ, Larrabee JA, McKenzie CJ (2008) Dicobalt II/II, II/III, and III/III complexes as spectroscopic models for dicobalt enzyme active sites. Inorg Chem. 47:5079–5092PubMedCrossRefGoogle Scholar
  39. 39.
    Larrabee JA, Chyun S-A, Volwiler AS (2008) Magnetic circular dichroism study of a dicobalt(II) methionine aminopeptidase/fumagillin complex and dicobalt II/II and II/III model complexes. Inorg Chem 47:10499–10508PubMedCrossRefGoogle Scholar
  40. 40.
    Hong S-B, Kuo JM, Mullins LS, Raushel FM (1995) CO2 is required for the assembly of the binuclear metal center of phosphotriesterase. J Am Chem Soc 117:7580–7581CrossRefGoogle Scholar
  41. 41.
    Kiefer LL, Paterno SA, Fierke CA (1995) Hydrogen bond network in the metal binding site of carbonic anhydrase enhances zinc affinity and catalytic efficiency. J Am Chem Soc 117:6831–6837CrossRefGoogle Scholar
  42. 42.
    Samples CR, Raushel FM, DeRose VJ (2007) Activation of the binuclear metal center through formation of phosphotriesterase; inhibitor complexes. Biochemistry 46:3435–3442PubMedCrossRefGoogle Scholar
  43. 43.
    Grimsley JK, Calamini B, Wild JR, Mesecar AD (2005) Structural and mutational studies of organophosphorus hydrolase reveal a cryptic and functional allosteric-binding site. Arch Biochem Biophys 442:169–179PubMedCrossRefGoogle Scholar
  44. 44.
    Neri F, Kok D, Miller MA, Smulevich G (1997) Fluoride binding in hemoproteins: the importance of the distal cavity structure. Biochemistry 36:8947–8953PubMedCrossRefGoogle Scholar
  45. 45.
    Brändén R, Malmström BG, Vänngård T (1973) The effect of fluoride on the spectral and catalytic properties of the three copper-containing oxidases. Eur J Biochem 36:195PubMedCrossRefGoogle Scholar
  46. 46.
    Todd MJ, Hausinger RP (2000) Fluoride inhibition of Klebsiella aerogenes urease: mechanistic implications of a pseudo-uncompetitive, slow-binding inhibitor. Biochemistry 39:5389–5396PubMedCrossRefGoogle Scholar
  47. 47.
    Tormanen CD (2003) Substrate inhibition of rat liver and kidney arginase with fluoride. J Inorg Biochem 93:243PubMedCrossRefGoogle Scholar
  48. 48.
    Pethe S, Boucher JL, Mansuy D (2002) Interaction of anions with rat liver arginase: specific inhibitory effects of fluoride. J Inorg Biochem 88:397–402PubMedCrossRefGoogle Scholar
  49. 49.
    Cama E, Pethe S, Boucher J-L, Han S, Emig FA, Ash DE, Viola RE, Mansuy D, Christianson DW (2004) Inhibitor coordination interactions in the binuclear manganese cluster of arginase. Biochemistry 43:8987–8999PubMedCrossRefGoogle Scholar
  50. 50.
    Mitić N, Valizadeh M, Leung EWW, de Jersey J, Hamilton S, Hume DA, Cassady AI, Schenk G (2005) Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation. Arch Biochem Biophys 439:154–164PubMedCrossRefGoogle Scholar
  51. 51.
    Merkx M, Pinkse MWH, Averill BA (1999) Evidence for nonbridged coordination of p-nitrophenyl phosphate to the dinuclear Fe(III), Mn(II) center in bovine spleen purple acid phosphatase during enzymatic turnover. Biochemistry 38:9914–9925PubMedCrossRefGoogle Scholar
  52. 52.
    Elliott TW, Mitic N, Gahan LR, Guddat LW, Schenk G (2006) Inhibition studies of purple acid phosphatases: implications for the catalytic mechanism. J Braz Chem Soc 17:1558–1565CrossRefGoogle Scholar
  53. 53.
    Wang X, Ho RYN, Whiting AK, Que L (1999) Spectroscopic characterization of a ternary phosphatase, substrate, fluoride complex. Mechanistic implications for dinuclear hydrolases. J Am Chem Soc. 121:9235–9236CrossRefGoogle Scholar
  54. 54.
    Schenk G, Elliott TW, Leung E, Carrington LE, Mitić N, Gahan LR, Guddat LW (2008) Crystal structures of a purple acid phosphatase, representing different steps of this enzyme’s catalytic cycle. BMC Struct Biol 8:6PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Jackson C, Kim H-K, Carr PD, Liu J-W, Ollis DL (2005) The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Biochimica et Biophysica Acta (BBA) Proteins Proteomics 1752:56–64CrossRefGoogle Scholar
  56. 56.
    Benning MM, Shim H, Raushel FM, Holden HM (2001) High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry 40:2712–2722PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  • Marcelo M. Pedroso
    • 1
  • Fernanda Ely
    • 1
  • Nataša Mitić
    • 2
  • Margaret C. Carpenter
    • 3
  • Lawrence R. Gahan
    • 1
  • Dean E. Wilcox
    • 3
  • James L. Larrabee
    • 4
  • David L. Ollis
    • 5
  • Gerhard Schenk
    • 1
  1. 1.School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaAustralia
  2. 2.Department of ChemistryNational University of Ireland, MaynoothCo. KildareIreland
  3. 3.Department of ChemistryDartmouth CollegeHanoverUSA
  4. 4.Department of Chemistry and BiochemistryMiddlebury CollegeMiddleburyUSA
  5. 5.Research School of ChemistryAustralian National UniversityCanberraAustralia

Personalised recommendations