JBIC Journal of Biological Inorganic Chemistry

, Volume 19, Issue 7, pp 1121–1135 | Cite as

The reduction rates of DEPC-modified mutant Thermus thermophilus Rieske proteins differ when there is a negative charge proximal to the cluster

  • Nicholas E. Karagas
  • Christie N. Jones
  • Deborah J. Osborn
  • Anika L. Dzierlenga
  • Paul Oyala
  • Mary E. Konkle
  • Emily M. Whitney
  • R. David Britt
  • Laura M. Hunsicker-Wang
Original Paper


Rieske and Rieske-type proteins are electron transport proteins involved in key biological processes such as respiration, photosynthesis, and detoxification. They have a [2Fe–2S] cluster ligated by two cysteines and two histidines. A series of mutations, L135E, L135R, L135A, and Y158F, of the Rieske protein from Thermus thermophilus has been produced which probe the effects of the neighboring residues, in the second sphere, on the dynamics of cluster reduction and the reactivity of the ligating histidines. These properties were probed using titrations and modifications with diethyl pyrocarbonate (DEPC) at various pH values monitored using UV–Visible and circular dichroism spectrophotometry. These results, along with results from EPR studies, provide information on ligating histidine modification and rate of reduction of each of the mutant proteins. L135R, L135A, and Y158F react with DEPC similarly to wild type, resulting in modified protein with a reduced [2Fe–2S] cluster in <90 min, whereas L135E requires >15 h under the same conditions. Thus, the negative charge slows down the rate of reduction and provides an explanation as to why negatively charged residues are rarely, if ever, found in the equivalent position of other Rieske and Rieske-type proteins.


Electron transfer Iron–sulfur cluster Rieske proteins DEPC Circular dichroism 



The cytochrome bc1 complex, complex III of the electron transport chain


3-(Cyclohexylamino)-1-propanesulfonic acid


Circular dichroism


Continuous-wave electron paramagnetic resonance


Diethyl pyrocarbonate


Dimethyl sulfoxide


4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid


Isopropyl β-d-1-thiogalactopyranoside


Ligand-to-metal charge transfer


2-(N-Morpholino)ethanesulfonic acid hydrate


3-(N-Morpholino)propanesulfonic acid


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid




The truncated version of the Rieske protein from Thermus thermophilus


The Thermus thermophilus Rieske protein that has the additional 17 amino acids



This work was supported by funds from the National Science Foundation (CHE-1058273) and the Welch Foundation (W-0031). Funding for EMW was provided in part by a grant from the Howard Hughes Medical Institute. We would like to acknowledge the work of Ravi Pokhrel who made the L135A mutant and Sarah Muellner who made the Y158F mutant. We would also like to acknowledge Abhishek Chhetri who discovered the need to change the buffer conditions for the pH-dependent UV–Visible titrations. We would also like to thank Drs. Bert Chandler and Nancy Mills for helpful discussions.

Supplementary material

775_2014_1167_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2074 kb)


  1. 1.
    Link TA (1999) The structures of Rieske and Rieske-type proteins. Adv Inorg Chem 47:83–157CrossRefGoogle Scholar
  2. 2.
    Hunsicker-Wang LM, Heine A, Chen Y, Luna EP, Todaro T, Zhang Y, Williams PA, McRee DE, Hirst J, Stout CD, Fee JA (2003) High resolution structure of the soluble, respiratory-type Rieske protein from Thermus thermophilus: analysis and comparison. Biochemistry 42:7303–7317PubMedCrossRefGoogle Scholar
  3. 3.
    Link TA (2001) Fe-S Rieske center. In: Messerschmidt A, Huber R, Weighardt K, Poulos T (eds) Handbook of metalloproteins, vol 1. Wiley, New York, pp 518–531Google Scholar
  4. 4.
    Hsueh K, Westler WM, Markley JL (2010) NMR investigations of the Rieske protein from Thermus thermophilus support a coupled proton and electron transfer mechanism. J Am Chem Soc 132:7908–7918PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Konkle ME, Muellner SK, Schwander AL, Dicus MM, Pokhrel R, Britt RD, Taylor AB, Hunsicker-Wang LM (2009) Effect of pH on the Rieske protein from Thermus thermophilus: a spectroscopic and structural analysis. Biochemistry 48:9848–9857PubMedCrossRefGoogle Scholar
  6. 6.
    Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71PubMedCrossRefGoogle Scholar
  7. 7.
    Esser L, Quinn B, Li YF, Zhang M, Elberry M, Yu L, Yu CA, Xia D (2004) Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome bc(1) complex. J Mol Biol 341:281–302PubMedCrossRefGoogle Scholar
  8. 8.
    Gurung B, Yu L, Yu CA (2008) Stigmatellin induces reduction of iron–sulfur protein in the oxidized cytochrome bc1 complex. J Biol Chem 283:28087–28094PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    von Jagow G, Ohnishi T (1985) The chromone inhibitor stigmatellin-binding to the ubiquinol oxidation center at the C-side of the mitochondrial membrane. FEBS Lett 185:311–315CrossRefGoogle Scholar
  10. 10.
    Zu Y, Fee JA, Hirst J (2001) Complete thermodynamic characterization of reduction and protonation of the bc 1-type Rieske [2Fe–2S] center of Thermus thermophilus. J Am Chem Soc 123:9906–9907PubMedCrossRefGoogle Scholar
  11. 11.
    Zu Y, Couture MM, Kolling DRJ, Crofts AR, Eltis LD, Fee JA, Hirst J (2003) Reduction potentials of Rieske clusters: importance of the coupling between oxidation state and histidine protonation state. Biochemistry 42:12400–12408PubMedCrossRefGoogle Scholar
  12. 12.
    Konkle ME, Elsenheimer KN, Hakala K, Robicheaux JC, Weintraub ST, Hunsicker-Wang LM (2010) Chemical modification of the Rieske protein from Thermus thermophilus using diethyl pyrocarbonate modifies ligating histidine 154 and reduces the [2Fe–2S] cluster. Biochemistry 49:7272–7281PubMedCrossRefGoogle Scholar
  13. 13.
    Lin I, Chen Y, Fee JA, Song J, Westler WM, Markley JL (2006) Rieske protein from Thermus thermophilus: 15N NMR titration study demonstrates the role of iron-ligated histidines in the pH dependence of the reduction potential. J Am Chem Soc 128:10672–10673PubMedCrossRefGoogle Scholar
  14. 14.
    Iwaki M, Yakovlev G, Hirst J, Osyczka A, Dutton PL, Marshall D, Rich PR (2005) Direct observation of redox-linked histidine protonation changes in the iron–sulfur protein of the cytochrome bc 1 complex by ATR-FTIR spectroscopy. Biochemistry 44:4230–4237PubMedCrossRefGoogle Scholar
  15. 15.
    Miles EW (1977) Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol 47:431–442PubMedCrossRefGoogle Scholar
  16. 16.
    Lundblad RL (2005) Chemical reagents for protein modification, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Yagi T, Vik SB, Hatefi Y (1982) Reversible inhibition of the mitochondrial ubiquinol-cytochrome c oxidoreductase complex (complex III) by ethoxyformic anhydride. Biochemistry 21:4777–4782PubMedCrossRefGoogle Scholar
  18. 18.
    Ohnishi T, Meinhardt SW, von Jagow G, Yagi T, Hatefi Y (1994) Effect of ethoxyformic anhydride on the Rieske iron–sulfur protein of bovine heart ubiquinol: cytochrome c oxidoreductase. FEBS Lett 353:103–107PubMedCrossRefGoogle Scholar
  19. 19.
    Lorusso M, Gatti D, Boffoli D, Bellomo E, Papa S (1983) Redox-linked proton translocation in the b–c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. Studies with chemical modifiers of amino acid residues. Eur J Biochem 137:413–420PubMedCrossRefGoogle Scholar
  20. 20.
    Lorusso M, Gatti D, Marzo M, Boffoli D, Cocco T, Papa S (1987) Chemical modification studies of beef-heart mitochondrial b–c1 complex. Effect of modification by ethoxyformic anhydride. Eur J Biochem 162:231–238PubMedCrossRefGoogle Scholar
  21. 21.
    Zu Y, Fee JA, Hirst J (2002) Breaking and re-forming the disulfide bond at the high-potential, respiratory-type Rieske [2Fe–2S] center of Thermus thermophilus: characterization of the sulfhydryl state by protein-film voltammetry. Biochemistry 41:14054–14065PubMedCrossRefGoogle Scholar
  22. 22.
    Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954PubMedCrossRefGoogle Scholar
  24. 24.
    Leggate EJ, Hirst J (2005) Roles of the disulfide bond and adjacent residues in determining the reduction potentials and stabilities of respiratory-type Rieske clusters. Biochemistry 44:7048–7058PubMedCrossRefGoogle Scholar
  25. 25.
    Klingen AR, Ullmann GM (2004) Negatively charged residues and hydrogen bonds tune the ligand histidine pKa values of Rieske iron–sulfur proteins. Biochemistry 43:12383–12389PubMedCrossRefGoogle Scholar
  26. 26.
    Kolling DJ, Brunzelle JS, Lhee S, Crofts AR, Nair SK (2007) Atomic resolution structures of Rieske iron–sulfur protein: role of hydrogen bonds in tuning the redox potential of iron–sulfur clusters. Structure 15:29–38PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kuila D, Fee JA (1986) Evidence for a redox-linked ionizable group associated with the [2Fe–2S] cluster of the Thermus Rieske protein. J Biol Chem 261:2768–2771PubMedGoogle Scholar
  28. 28.
    Link TA, Hatzfeld OM, Unalkat P, Shergill JK, Cammack R, Mason JR (1996) Comparison of the “Rieske” [2Fe–2S] center in the bc 1 complex and in bacterial dioxygenases by circular dichroism spectroscopy and cyclic voltammetry. Biochemistry 35:7546–7552PubMedCrossRefGoogle Scholar
  29. 29.
    Bertrand P, Guigliarelli B, Gayda J, Peter B, Gibson JF (1985) A ligand-field model to describe a new class of 2Fe–2S clusters in proteins and their synthetic analogues. Biochimica et Biophysica Acta (BBA) Protein Struct Mol Enzymol 831:261–266Google Scholar
  30. 30.
    Orio M, Mouesca JM (2008) Variation of average g values and effective exchange coupling constants among [2Fe–2S] clusters: a density functional theory study of the impact of localization (trapping forces) versus delocalization (double-exchange) as competing factors. Inorg Chem 47:5394–5416PubMedCrossRefGoogle Scholar
  31. 31.
    Denke E, Merbitz-Zahradnik T, Hatzfeld OM, Snyder CH, Link TA, Trumpower BL (1998) Alteration of the midpoint potential and catalytic activity of the Rieske iron–sulfur protein by changes of amino acids forming hydrogen bonds to the iron–sulfur cluster. J Biol Chem 273:9085–9093PubMedCrossRefGoogle Scholar
  32. 32.
    Grace ME, Loosemore MJ, Semmel ML, Pratt RF (1980) Kinetics and mechanism of Bamberger cleavage of imidazole and of histidine derivatives by diethyl pyrocarbonate in aqueous solution. J Am Chem Soc 102:6784–6789CrossRefGoogle Scholar
  33. 33.
    Iwasaki T, Fukazawa R, Miyajima-Nakano Y, Baldansuren A, Matsushita S, Lin MT, Gennis RB, Hasegawa K, Kumasaka T, Dikanov SA (2012) Dissection of hydrogen bond interaction network around an iron–sulfur cluster by site-specific isotope labeling of hyperthermophilic archaeal Rieske-type ferredoxin. J Am Chem Soc 134:19731–19738PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–W549PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 6:571–586PubMedCrossRefGoogle Scholar
  36. 36.
    Dong X, Fushinobu S, Fukuda E, Terada T, Nakamura S, Shimizu K, Nojiri H, Omori T, Shoun H, Wakagi T (2005) Crystal structure of the terminal oxygenase component of cumene dioxygenase from pseudomonas fluorescens IP01. J Bacteriol 187:2483–2490PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308PubMedCrossRefGoogle Scholar
  38. 38.
    Carrell CJ, Zhang H, Cramer WA, Smith JL (1997) Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5:1613–1625PubMedCrossRefGoogle Scholar
  39. 39.
    Veit S, Takeda K, Tsunoyama Y, Rexroth D, Rogner M, Miki K (2012) Structure of a thermophilic cyanobacterial b6f-type Rieske protein. Acta Crystallogr D Biol Crystallogr 68:1400–1408PubMedCrossRefGoogle Scholar
  40. 40.
    Iwata S, Saynovits M, Link TA, Michel H (1996) Structure of a water soluble fragment of the ‘Rieske’ iron–sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 A resolution. Structure 4:567–579PubMedCrossRefGoogle Scholar
  41. 41.
    Bonisch H, Schmidt CL, Schafer G, Ladenstein R (2002) The structure of the soluble domain of an archaeal Rieske iron–sulfur protein at 1.1 Å resolution. J Mol Biol 319:791–805PubMedCrossRefGoogle Scholar
  42. 42.
    Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S (2009) Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. Acta Crystallogr D Biol Crystallogr 65:24–33PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ashikawa Y, Fujimoto Z, Usami Y, Inoue K, Noguchi H, Yamane H, Nojiri H (2012) Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of Rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase. BMC Struct Biol 12:15. doi:10.1186/1472-6807-12-15
  44. 44.
    Colbert CL, Couture MM, Eltis LD, Bolin JT (2000) A cluster exposed: structure of the Rieske ferredoxin from biphenyl dioxygenase and the redox properties of Rieske Fe–S proteins. Structure 8:1267–1278PubMedCrossRefGoogle Scholar
  45. 45.
    Brown EN, Friemann R, Karlsson A, Parales JV, Couture MM, Eltis LD, Ramaswamy S (2008) Determining Rieske cluster reduction potentials. J Biol Inorg Chem 13:1301–1313PubMedCrossRefGoogle Scholar
  46. 46.
    Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9:125–132PubMedCrossRefGoogle Scholar
  47. 47.
    Moe LA, Bingman CA, Wesenberg GE, Phillips GN Jr, Fox BG (2006) Structure of T4moC, the Rieske-type ferredoxin component of toluene 4-monooxygenase. Acta Crystallogr D Biol Crystallogr 62:476–482PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  • Nicholas E. Karagas
    • 1
    • 3
  • Christie N. Jones
    • 1
  • Deborah J. Osborn
    • 1
  • Anika L. Dzierlenga
    • 1
    • 4
  • Paul Oyala
    • 2
  • Mary E. Konkle
    • 1
    • 5
  • Emily M. Whitney
    • 1
    • 6
  • R. David Britt
    • 2
  • Laura M. Hunsicker-Wang
    • 1
  1. 1.Department of ChemistryTrinity UniversitySan AntonioUSA
  2. 2.Department of ChemistryUniversity of California at DavisDavisUSA
  3. 3.University of Texas at Houston Medical SchoolHoustonUSA
  4. 4.Department of Pharmacology and ToxicologyUniversity of ArizonaTucsonUSA
  5. 5.Department of ChemistryEastern Illinois UniversityCharlestonUSA
  6. 6.University of Georgia College of PharmacyAthensUSA

Personalised recommendations