Copper-induced structural propensities of the amyloidogenic region of human prion protein

  • Caterina Migliorini
  • Adalgisa Sinicropi
  • Henryk Kozlowski
  • Marek Luczkowski
  • Daniela Valensin
Original Paper
Part of the following topical collections:
  1. Topical Issue in honor of Ivano Bertini


Transmissible spongiform encephalopathies are associated with the misfolding of the cellular Prion Protein (PrPC) to an abnormal protein isoform, called scrapie prion protein (PrPSc). The structural rearrangement of the fragment of N-terminal domain of the protein spanning residues 91–127 is critical for the observed structural transition. The amyloidogenic domain of the protein encloses two copper-binding sites corresponding to His-96 and His-111 residues that act as anchors for metal ion binding. Previous studies have shown that Cu(II) sequestration by both sites may modulate the peptide’s tendency to aggregation as it inflicts the hairpin-like structure that stabilizes the transition states leading to β-sheet formation. On the other hand, since both His sites differ in their ability to Cu(II) sequestration, with His-111 as a preferred binding site, we found it interesting to test the role of Cu(II) coordination to this single site on the structural properties of amyloidogenic domain. The obtained results reveal that copper binding to His-111 site imposes precise backbone bending and weakens the natural tendency of apo peptide to β-sheet formation.


Prion protein Copper His-111 Amyloidogenic region β-Sheet 


  1. 1.
    Soto C, Castilla J (2004) Nat Med 10(Suppl):S63–S70PubMedCrossRefGoogle Scholar
  2. 2.
    Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Am J Pathol 122:1–5PubMedCentralPubMedGoogle Scholar
  3. 3.
    Prusiner SB (1998) Proc Natl Acad Sci 95(25):13363–13383PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Prusiner SB (2001) N Engl J Med 344:1516–1526PubMedCrossRefGoogle Scholar
  5. 5.
    Van der Kamp MW, Daggett V (2010) Biophys J 99(7):2289–2298PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Pan KM, Baldwin M, Prusiner SB (1993) Proc Natl Acad Sci USA 90(23):10962–10966PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Jackson GS, Hill SF, Collinge J (1999) Biochim Biophys Acta 1431(1):1–13PubMedCrossRefGoogle Scholar
  8. 8.
    Grande-Aztatzi R, Rivillas-Acevedo L, Quintanar L, Vela A (2013) J Phys Chem B 117(3):789–799PubMedCrossRefGoogle Scholar
  9. 9.
    Prusiner SB (1982) Science 216(4545):136–140PubMedCrossRefGoogle Scholar
  10. 10.
    Prusiner SB (1991) Science 252(5012):1515–1522PubMedCrossRefGoogle Scholar
  11. 11.
    Prusiner SB (1997) Science 278(5336):245–255PubMedCrossRefGoogle Scholar
  12. 12.
    Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck TA, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) Nature 390(6661):684–687PubMedCrossRefGoogle Scholar
  13. 13.
    Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Coord Chem Rev 256(19–20):2129–2141CrossRefGoogle Scholar
  14. 14.
    Jackson GS, Murray I, Hosszu LLP, Gibbs N, Waltho JP, Clarke AR, Collinge J (2001) Proc Natl Acad Sci USA 98(15):8531–8535PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Chem Rev 106(6):1995–2044PubMedCrossRefGoogle Scholar
  16. 16.
    Lehmann S (2002) Curr Opin Chem Biol 6(2):187–192PubMedCrossRefGoogle Scholar
  17. 17.
    Brown DR, Kozlowski H (2004) Dalton Trans (13):1907–1917Google Scholar
  18. 18.
    Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G (2009) Coord Chem Rev 253(21–22):2665–2685CrossRefGoogle Scholar
  19. 19.
    Millhauser GL (2004) Acc Chem Res 37(2):79–85PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT (2013) Magn Reson Chem 51:255–268PubMedCrossRefGoogle Scholar
  21. 21.
    Migliorini C, Porciatti E, Luczkowski M, Valensin D (2012) Coord Chem Rev 256(1–2):352–368CrossRefGoogle Scholar
  22. 22.
    Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Biochemistry 41(12):3991–4001PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Valensin D, Luczkowski M, Mancini FM, Legowska A, Gaggelli E, Valensin G, Rolka K, Kozlowski H (2004) Dalton Trans 7(9):1284–1293CrossRefGoogle Scholar
  24. 24.
    Garnett AP, Viles JH (2003) J Biol Chem 278(9):6795–6802PubMedCrossRefGoogle Scholar
  25. 25.
    Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, Gerfen GJ, Bennett B, Antholine WE, Millhauser GL (2005) J Am Chem Soc 127(36):12647–12656PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Kozlowski H, Luczkowski M, Remelli M (2010) Dalton Trans 39:6371–6385PubMedCrossRefGoogle Scholar
  27. 27.
    Walter ED, Chattopadhyay M, Millhauser GL (2006) Biochemistry 45(43):13083–13092PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Arena G, La Mendola D, Pappalardo G, Sovago I, Rizzarelli E (2012) Coord Chem Rev 256(19–20):2202–2218CrossRefGoogle Scholar
  29. 29.
    Wells MA, Jelinska C, Hosszu LL, Craven CJ, Clarke AR, Collinge J, Waltho JP, Jackson GS (2006) Biochem J 400(3):501–510PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Gralka E, Valensin D, Porciatti E, Gajda C, Gaggelli E, Valensin G, Kamysz W, Nadolny R, Guerrini R, Bacco D, Remelli M, Kozlowski H (2008) Dalton Trans 38:5207–5219Google Scholar
  31. 31.
    Jones CE, Abdelraheim SR, Brown DR, Viles JH (2004) J Biol Chem 279(31):32018–32027PubMedCrossRefGoogle Scholar
  32. 32.
    Wells MA, Jackson GS, Jones S, Hosszu LL, Craven CJ, Clarke AR, Collinge J, Waltho JP (2006) Biochem J 399(3):435–444PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Berti F, Gaggelli E, Guerrini R, Janicka A, Kozlowski H, Legowska A, Miecznikowska H, Migliorini C, Pogni R, Remelli M, Rolka K, Valensin D, Valensin G (2007) Chem Eur J 13(7):1991–2001PubMedCrossRefGoogle Scholar
  34. 34.
    Klewpatinond M, Viles JH (2007) Biochem J 404(3):393–402PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Remelli M, Valensin D, Bacco D, Gralka E, Guerrini R, Migliorini C, Kozlowski H (2009) N J Chem 33(11):2300–2310CrossRefGoogle Scholar
  36. 36.
    Ősz K, Nagy Z, Pappalardo G, Di Natale G, Sanna D, Micera G, Rizzarelli E, Sóvágó I (2007) Chem Eur J 13(25):7129–7143PubMedCrossRefGoogle Scholar
  37. 37.
    Walter ED, Stevens DJ, Spevacek AR, Visconte MP, Dei Rossi A, Millhauser GL (2009) Curr Protein Pept Sci 10(5):529–535PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL (2003) Biochemistry 42(22):6794–6803PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Shearer J, Soh P (2007) Inorg Chem 46:710–719PubMedCrossRefGoogle Scholar
  40. 40.
    Shearer J, Soh P, Lentz S (2008) J Inorg Biochem 102:2103–2113PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Rivillas-Acevedo L, Grande-Aztatzi R, Lomeli I, Garcia JE, Barrios E, Teloxa S, Vela A, Quintanar L (2011) 50:1956–1972Google Scholar
  42. 42.
    Remelli M, Valensin D, Toso L, Gralka E, Guerrini R, Marzola E, Kozłowski H (2012) Metallomics 4(8):794–806PubMedCrossRefGoogle Scholar
  43. 43.
    Sovago I, Kallay C, Varnagy K (2012) Coord Chem Rev 256(19–20):2225–2233CrossRefGoogle Scholar
  44. 44.
    Furlan S, La Penna G (2012) Coord Chem Rev 256(19–20):2234–2244CrossRefGoogle Scholar
  45. 45.
    Mentler M, Weiss A, Grantner K, Del Pino P, Deluca D, Fiori S, Renner C, Klaucke WM, Moroder L, Bertsch U, Kretzschmar HA, Tavan P, Parak FG (2005) Eur Biophys J 34:97–112PubMedCrossRefGoogle Scholar
  46. 46.
    Furlan S, La Penna G, Guerrieri F, Morante S, Rossi GC (2007) J Biol Inorg Chem 12:571–583PubMedCrossRefGoogle Scholar
  47. 47.
    Marino T, Russo N, Toscano M (2007) J Phys Chem B 111(3):635–640PubMedCrossRefGoogle Scholar
  48. 48.
    Pushie MJ, Rauk A (2003) J Biol Inorg Chem 8:53–65PubMedCrossRefGoogle Scholar
  49. 49.
    Riihimäki ES, Martínez JM, Kloo L (2007) J Phys Chem B 111(35):10529–10537PubMedCrossRefGoogle Scholar
  50. 50.
    Pushie MJ, Vogel HJ (2007) Biophys J 93(11):3762–3774PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Pushie MJ, Vogel HJ (2008) Biophys J 95(11):5084–5091PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Riihimäki ES, Martínez JM, Kloo L (2008) Phys Chem Chem Phys 10(18):2488–2495PubMedCrossRefGoogle Scholar
  53. 53.
    Valensin G, Molteni E, Valensin D, Taraszkiewicz M, Kozlowski H (2009) J Phys Chem B 113(11):3277–3279PubMedCrossRefGoogle Scholar
  54. 54.
    Pushie MJ, Vogel HJ (2009) J Toxicol Environ Health A 72(17–18):1040–1059PubMedCrossRefGoogle Scholar
  55. 55.
    Pushie MJ, Rauk A, Jirik FR, Vogel HJ (2009) Biometals 22(1):159–175PubMedCrossRefGoogle Scholar
  56. 56.
    Jobling MF, Stewart LR, White AR, McLean C, Friedhuber A, Maher F, Beyreuther K, Masters CL, Barrow CJ, Collins SJ, Cappai R (1999) J Neurochem 73(4):1557–1565PubMedCrossRefGoogle Scholar
  57. 57.
    Selvaggini C, De Gioia L, Cantù L, Ghibaudi E, Diomede L, Passerini F, Forloni G, Bugiani O, Tagliavini F, Salmona M (1993) Biochem Biophys Res Commun 194(3):1380–1386PubMedCrossRefGoogle Scholar
  58. 58.
    De Gioia L, Selvaggini C, Ghibaudi E, Diomede L, Bugiani O, Forloni G, Tagliavini F, Salmona M (1994) J Biol Chem 269(11):7859–7862PubMedGoogle Scholar
  59. 59.
    Walsh P, Neudecker P, Sharpe S (2010) J Am Chem Soc 132(22):7684–7695PubMedCrossRefGoogle Scholar
  60. 60.
    Güntert P; Mumenthaler C; Wüthrich K (1997) J Mol Biol, p 273Google Scholar
  61. 61.
    Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306–317Google Scholar
  62. 62.
    van der Spoel D, Lindahl E, Hess B, Mark AE, Berendsen HJ (2005) J Comput Chem 26(16):1701–1718CrossRefGoogle Scholar
  63. 63.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118(45):11225–11236CrossRefGoogle Scholar
  64. 64.
    Kaminski GA, Friesner RA (2001) J Phys Chem B 105(28):6474–6487CrossRefGoogle Scholar
  65. 65.
    Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc 110(6):1657–1667CrossRefGoogle Scholar
  66. 66.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JrT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, G Liu, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill MPW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.02, Gaussian, Inc., Wallingford CTGoogle Scholar
  67. 67.
    Rajapandian V, Hakkim V, Subramanian V (2010) J Phys Chem B 114(25):8474–8486PubMedCrossRefGoogle Scholar
  68. 68.
    Kabasch W, Sander C (1983) Biopolymers 22:2577–2637CrossRefGoogle Scholar
  69. 69.
    Byler DM, Susi H (1986) Biopolymers 25:469–487PubMedCrossRefGoogle Scholar
  70. 70.
    Uversky VN (2014) Front Biosci (Landmark Ed) 19:181–258CrossRefGoogle Scholar
  71. 71.
    Jiang T, Zhou GR, Zhang YH, Sun PC, Du QM, Zhou P (2012) RSC Adv 2:9106–9113CrossRefGoogle Scholar
  72. 72.
    Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV (2000) Protein Sci 9:1960–1967PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Botelho HM, Leal SS, Cardoso I, Yanamandra K, Morozova-Roche LA, Fritz G, Gomes CM (2012) J Biol Chem 287(50):42233–42242PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Shivu B, Seshadri S, Li J, Oberg KA, Uversky VN, Fink AL (2013) Biochemistry 52(31):5176–5183PubMedCrossRefGoogle Scholar
  75. 75.
    He C, Han Y, Zhu L, Deng M, Wang Y (2013) J Phys Chem B 117(36):10475–10483PubMedCrossRefGoogle Scholar
  76. 76.
    Pivato M, De Franceschi G, Tosatto L, Frare E, Kumar D, Aioanei D, Brucale M, Tessari I, Bisaglia M, Samori B, de Laureto PP, Bubacco L (2012) PLoS ONE 7(12):e50027PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Govaerts C, Wille H, Prusiner SB, Cohen FE (2004) Natl Acad Sci USA 101(22):8342–8347CrossRefGoogle Scholar
  78. 78.
    Lu X, Wintrode PL, Surewicz WK (2007) Proc Natl Acad Sci USA 104(5):1510–1515PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Cobb NJ, Sönnichsen FD, McHaourab H, Surewicz WK (2007) Proc Natl Acad Sci USA 104(48):18946–18951PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    DeMarco ML, Daggett V (2004) Proc Natl Acad Sci USA 100(8):2293–2298CrossRefGoogle Scholar
  81. 81.
    Ji HF, Zhang HY (2010) Trends Biochem Sci 35(3):129–134PubMedCrossRefGoogle Scholar
  82. 82.
    Campos SRR, Machuquiero M, Baptista AM (2010) J Phys Chem B 114(39):12692–12700PubMedCrossRefGoogle Scholar
  83. 83.
    Xu Z, Lazim R, Mei Y, Zhang D (2012) Chem Phys Lett 539–540:239–244CrossRefGoogle Scholar
  84. 84.
    Thukral L, Daidone I, Smith JC (2011) PLoS Comput Biol 7(9):e1002137PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Saracino GAA, Villa A, Moro G, Cosentino U, Salmona M (2009) Proteins 75(4):964–976PubMedCrossRefGoogle Scholar
  86. 86.
    Gu W, Wang T, Zhu J, Shi Y, Liu H (2003) Biophys Chem 104(1):79–94PubMedCrossRefGoogle Scholar
  87. 87.
    Rossetti G, Cong X, Caliandro R, Legname G, Carloni P (2011) J Mol Biol 411(3):700–712PubMedCrossRefGoogle Scholar
  88. 88.
    Opazo C, Barría MI, Ruiz FH, Inestrosa NC (2003) Biometals 16(1):91–98PubMedCrossRefGoogle Scholar
  89. 89.
    Ruiz FH, Silva E, Inestrosa NC (2000) Biochem Biophys Res Commun 269(2):491–495PubMedCrossRefGoogle Scholar
  90. 90.
    Varela-Nallar L, Toledo EM, Chacón MA, Inestrosa NC (2006) Biol Res 39(1):39–44PubMedCrossRefGoogle Scholar
  91. 91.
    Varela-Nallar L, González A (2006) Inestrosa NC. Curr Pharm Des 12(20):2587–2595PubMedCrossRefGoogle Scholar
  92. 92.
    Di Natale G, Grasso G, Impellizzeri G, La Mendola D, Micera G, Mihala N, Nagy Z, Osz K, Pappalardo G, Rigó V, Rizzarelli E, Sanna D, Sóvágó I (2005) Inorg Chem 44(20):7214–7225PubMedCrossRefGoogle Scholar
  93. 93.
    Natalello A, Prokorov VV, Tagliavini F, Morbin M, Forloni G, Beeg M, Manzoni C, Colombo L, Gobbi M, Salmona M, Doglia SM (2008) J Mol Biol 381(5):1349–1361PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  • Caterina Migliorini
    • 1
  • Adalgisa Sinicropi
    • 1
  • Henryk Kozlowski
    • 2
  • Marek Luczkowski
    • 2
  • Daniela Valensin
    • 1
  1. 1.Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
  2. 2.Faculty of ChemistryUniversity of WroclawWrocławPoland

Personalised recommendations