Solid-state NMR studies of metal-free SOD1 fibrillar structures

  • Lucia Banci
  • Olga Blaževitš
  • Francesca Cantini
  • Jens Danielsson
  • Lisa Lang
  • Claudio Luchinat
  • Jiafei Mao
  • Mikael Oliveberg
  • Enrico Ravera
Original Paper
Part of the following topical collections:
  1. Topical Issue in honor of Ivano Bertini


Copper–zinc superoxide dismutase 1 (SOD1) is present in the protein aggregates deposited in motor neurons of amyotrophic lateral sclerosis (ALS) patients. ALS is a neurodegenerative disease that can be either sporadic (ca. 90 %) or familial (fALS). The most widely studied forms of fALS are caused by mutations in the sequence of SOD1. Ex mortuo SOD1 aggregates are usually found to be amorphous. In vitro SOD1, in its immature reduced and apo state, forms fibrillar aggregates. Previous literature data have suggested that a monomeric SOD1 construct, lacking loops IV and VII, (apoSODΔIV–VII), shares the same fibrillization properties of apoSOD1, both proteins having the common structural feature of the central β-barrel. In this work, we show that structural information can be obtained at a site-specific level from solid-state NMR. The residues that are sequentially assignable are found to be located at the putative nucleation site for fibrillar species formation in apoSOD, as detected by other experimental techniques.


Copper–zinc superoxide dismutase 1 SOD1 Solid-state NMR Fibrils Aggregation ALS 



The projects PRIN (2009FAKHZT_001) “Biologia strutturale meccanicistica: avanzamenti metodologici e biologici”, BIO-NMR (contract no. 261863, NMR for Structural Biology, We-NMR (contract no. 261572, “A worldwide e-Infrastructure for NMR and structural biology”) are acknowledged for funding. This work was also supported by Instruct, part of the European Strategy Forum on Research Infrastructures (ESFRI) and supported by national member subscriptions. Specifically, we thank the EU ESFRI Instruct Core Centre CERM–Italy.

Supplementary material

775_2014_1130_MOESM1_ESM.pdf (259 kb)
Supplementary material 1 (PDF 258 kb)


  1. 1.
    Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Trends Biochem Sci 32:217–224PubMedCrossRefGoogle Scholar
  2. 2.
    Ross CA, Poirier MA (2004) Nat Med 10:S10–S17PubMedCrossRefGoogle Scholar
  3. 3.
    Luheshi LM, Crowther DC, Dobson CM (2008) Curr Opin Chem Biol 12:25–31PubMedCrossRefGoogle Scholar
  4. 4.
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan J, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gatson SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van der Bergh R, Hung W-Y, Bird, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH Jr (1993) Nature 362:59–62Google Scholar
  5. 5.
    Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, Brown RH, Price DL, Sisodia SS, Cleveland DW (1994) Proc Natl Acad Sci USA 91:8292–8296PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Deng HX, Hentati A, Tainer JA, Lqbal Z, Cyabyab A, Hang W-Y, Getzoff ED, Hu P, Herzfeldt B, Roos RP, Warner C, Deng G, Soriano E, Smyth C, Parge HE, Ahmed A, Roses AD, Hallewell RA, Pericak-Vance MA, Siddique T (1993) Science 261:1047–1051PubMedCrossRefGoogle Scholar
  7. 7.
    Blokhuis AM, Groen EJN, Koppers M, Van den Berg L, Pasterkamp RJ (2013) Acta Neuropathol 125:777–794PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sheng Y, Chattopadhyay M, Whitelegge JP, Valentine JS (2012) Curr Top Med Chem 12:2560–2572PubMedCrossRefGoogle Scholar
  9. 9.
    Forsberg K, Jonsson PA, Andersen PM, Bergemalm D, Graffmo KS, Hultdin M, Jacobsson J, Rosquist R, Marklund SL, Brannstrom T (2010) PLoS ONE 5:e11552PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zetterström P, Andersen PM, Brannstrom T, Marklund SL (2011) J Neurochem 117:91–99PubMedCrossRefGoogle Scholar
  11. 11.
    Shaw BF, Lelie HL, Durazo A, Nersissian AM, Xu G, Chan PK, Gralla EB, Tiwari A, Hayward LJ, Borchelt DR, Valentine JS, Whitelegge JP (2008) J Biol Chem 283:8340–8350PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kato S, Hayashi H, Nakashima K, Nanba E, Kato M, Hirano A, Nakano I, Asayama K, Ohama E (1997) Am J Pathol 151:611–620PubMedCentralPubMedGoogle Scholar
  13. 13.
    Banci L, Bertini I, Girotto S, Martinelli M, Vieru M, Whitelegge J, Durazo A, Valentine JS (2007) Proc Natl Acad Sci USA 104:11263–11267PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D, Frosch MP, Agar JN, Julien JP, Brady ST, Brown RH Jr (2010) Nat Neurosci 13:1396–1403PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998) Science 281:1851–1854PubMedCrossRefGoogle Scholar
  16. 16.
    Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D, Brown RH Jr (2004) Neuron 43:19–30PubMedCrossRefGoogle Scholar
  17. 17.
    Cozzolino M, Pesaresi MG, Amori I, Crosio C, Ferri A, Nencini M, Carri MT (2009) Antioxid Redox Signal 11:1547–1548PubMedCrossRefGoogle Scholar
  18. 18.
    Hayward LJ, Rodriguez JA, Kim JW, Tiwari A, Goto JJ, Cabelli DE, Valentine JS, Brown RHJ (2002) J Biol Chem 277(18):15923–15931PubMedCrossRefGoogle Scholar
  19. 19.
    Rodriguez JA, Valentine JS, Eggers DK, Roe JA, Tiwari A, Brown RHJ, Hayward LJ (2002) J Biol Chem 277:15932–15937PubMedCrossRefGoogle Scholar
  20. 20.
    Roe JA, Butler A, Scholler DM, Valentine JS, Marky L, Breslauer KJ (1988) Biochemistry 27:950–958PubMedCrossRefGoogle Scholar
  21. 21.
    Banci L, Bertini I, D’Amelio N, Libralesso E, Turano P, Valentine JS (2007) Biochemistry 46:9953–9962PubMedCrossRefGoogle Scholar
  22. 22.
    Chattopadhyay M, Durazo A, Sohn SH, Strong CD, Gralla EB, Whitelegge JP, Valentine JS (2008) Proc Natl Acad Sci USA 105:18663–18668PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Furukawa Y, Kaneko K, Yamanaka K, O’Halloran TV, Nukina N (2008) J Biol Chem 283:24167–24176PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Banci L, Bertini I, Boca M, Girotto S, Martinelli M, Valentine JS, Vieru M (2008) PLoS ONE 3:e1677PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Nordlund A, Leinartaite L, Saraboji K, Aisenbrey C, Grobner G, Zetterstrom P, Danielsson J, Logan DT, Oliveberg M (2009) Proc Natl Acad Sci USA 106:9667–9672PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Karch CM, Borchelt DR (2010) Arch Biochem Biophys 503:175–182PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Nordlund A, Oliveberg M (2006) Proc Natl Acad Sci USA 103:10218–10223PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Furukawa Y, Kaneko K, Yamanaka K, Nukina N (2010) J Biol Chem 285:22221–22231PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Banci L, Bertini I, Boca M, Calderone V, Cantini F, Girotto S, Vieru M (2009) Proc Natl Acad Sci USA 106:6980–6985PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Doucette PA, Whitson LJ, Cao X, Schirf V, Demeler B, Valentine JS, Hansen JC, Hart PJ (2004) J Biol Chem 279:54558–54566PubMedCrossRefGoogle Scholar
  31. 31.
    Arnesano F, Banci L, Bertini I, Martinelli M, Furukawa Y, O’Halloran TV (2004) J Biol Chem 279:47998–48003PubMedCrossRefGoogle Scholar
  32. 32.
    Lindberg MJ, Normark J, Holmgren A, Oliveberg M (2004) Proc Natl Acad Sci USA 101:15893–15898PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Ding F, Furukawa Y, Nukina N, Dokholyan NV (2012) J Mol Biol 421:548–560PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Banci L, Bertini I, Blazevits O, Cantini F, Lelli M, Luchinat C, Mao J, Vieru M (2011) J Am Chem Soc 133:345–349PubMedCrossRefGoogle Scholar
  35. 35.
    Lang L, Kurnik M, Danielsson J, Oliveberg M (2012) Proc Natl Acad Sci USA 109:17868–17873PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Chan PK, Chattopadhyay M, Sharma S, Souda P, Gralla EB, Borchelt DR, Whitelegge JP, Valentine JS (2013) Proc Natl Acad Sci USA 110:10934–10939PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Tang M, Comellas G, Rienstra CM (2013) Acc Chem Res 46:2080–2088PubMedCrossRefGoogle Scholar
  38. 38.
    Habenstein B, Bousset L, Sourigues Y, Kabani M, Loquet A, Meier BH, Melki R, Böckmann A (2012) Angew Chem Int Ed Engl 51:7963–7966PubMedCrossRefGoogle Scholar
  39. 39.
    Bertini I, Gonnelli L, Luchinat C, Mao J, Nesi A (2011) J Am Chem Soc 133:16013–16022PubMedCrossRefGoogle Scholar
  40. 40.
    Sun SJ, Siglin A, Williams JC, Polenova T (2009) J Am Chem Soc 131:10113–10126PubMedCrossRefGoogle Scholar
  41. 41.
    Byeon I-JL, Hou G, Han Y, Suiter CL, Ahn J, Jung J, Byeon C-H, Gronenborn AM, Polenova T (2012) JACS 134:6455–6466CrossRefGoogle Scholar
  42. 42.
    Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A (2012) Nature 486:276–279PubMedCentralPubMedGoogle Scholar
  43. 43.
    Loquet A, Habenstein B, Lange A (2013) Acc Chem Res 46:2070–2079PubMedCrossRefGoogle Scholar
  44. 44.
    Bertini I, Gallo G, Korsak M, Luchinat C, Mao J, Ravera E (2013) ChemBioChem 14:1891–1897PubMedCrossRefGoogle Scholar
  45. 45.
    Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) Proc Natl Acad Sci USA 99:16742–16747PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Tycko R, Ishii Y (2003) J Am Chem Soc 125:6606–6607PubMedCrossRefGoogle Scholar
  47. 47.
    Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Nat Struct Mol Biol 14:1157–1164PubMedCrossRefGoogle Scholar
  48. 48.
    Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010) J Am Chem Soc 132:10414–10423PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Van der Wel PCA, Lewandowski JR, Griffin RG (2010) Biochemistry 49:9457–9469PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Bayro MJ, Maly T, Birkett NR, MacPhee CE, Dobson CM, Griffin RG (2010) Biochemistry 49:7474–7484PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lopez del Amo JM, Fink U, Dasari M, Grelle G, Wanker EE, Bieschke J, Reif B (2012) J Mol Biol 421:517–524Google Scholar
  52. 52.
    Bieschke J, Herbst M, Wiglenda T, Friedrich RP, Boeddrich A, Schiele F, Kleckers D, Lopez del Amo JM, Grüning BA, Wang Q, Schmidt MR, Lurz R, Anwyl R, Schnoegl S, Fandrich M, Frank RF, Reif B, Günther S, Walsh DM, Wanker EE (2012) Nat Chem Biol 8:93–101Google Scholar
  53. 53.
    Lopez del Amo JM, Schmidt M, Fink U, Dasari M, Fändrich M, Reif B (2012) Angew Chem Int Ed Engl 51:6136–6139Google Scholar
  54. 54.
    Goobes G, Goobes R, Schueler-Furman O, Baker D, Stayton PS, Drobny GP (2006) Proc Natl Acad Sci USA 103:16083–16088PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Goobes G, Stayton PS, Drobny GP (2007) Progr NMR Spectrosc 50:71–85CrossRefGoogle Scholar
  56. 56.
    Roerich A, Drobny GP (2013) Acc Chem Res 46:2136–2144CrossRefGoogle Scholar
  57. 57.
    Fragai M, Luchinat C, Martelli T, Ravera E, Sagi I, Solomonov I, Udi Y (2014) Chem Commun (Camb.) 50(4):421–423CrossRefGoogle Scholar
  58. 58.
    Danielsson J, Kurnik M, Lang L, Oliveberg M (2011) J Biol Chem 286:33070–33083PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Petkova AT, Yau WM, Tycko R (2006) Biochemistry 45:498–512PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Fandrich M, Schmidt M, Grigorieff N (2011) Trends Biochem Sci 36:338–345PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Takegoshi K, Nakamura S, Terao T (1999) Chem Phys Lett 307:295–302CrossRefGoogle Scholar
  62. 62.
    Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Mol Phys 95:1197–1207CrossRefGoogle Scholar
  63. 63.
    Loening NM, Bjerring M, Nielsen NC, Oschkinat H (2012) J Magn Reson 214:81–90PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) ChemBioChem 2:272–281PubMedCrossRefGoogle Scholar
  65. 65.
    Igumenova TI, Wand AJ, McDermott AE (2004) J Am Chem Soc 126:5323–5331PubMedCrossRefGoogle Scholar
  66. 66.
    Pines A, Gibby MG, Waugh JS (1972) J Chem Phys 56:1776–1777CrossRefGoogle Scholar
  67. 67.
    Morris GA, Freeman R (1979) J Am Chem Soc 101:760–762CrossRefGoogle Scholar
  68. 68.
    Luckgei N, Schütz AK, Bousset L, Habenstein B, Sourigues Y, Gardiennet C, Meier BH, Melki R, Böckmann A (2013) Angew Chem Int Ed. doi:10.1002/anie.201304699 Google Scholar
  69. 69.
    Teilum K, Smith MH, Schulz E, Christensen LC, Solomentsev G, Oliveberg M, Akke M (2009) Proc Natl Acad Sci USA 106:18273–18278PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Danielsson J, Awad W, Saraboji K, Kurnik M, Lang L, Leinartaite L, Marklund SL, Logan DT, Oliveberg M (2013) Proc Natl Acad Sci USA 110:3829–3834PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Berjanskii MV, Neal S, Wishart DS (2006) Nucleic Acids Res 34:W63–W69PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Qiang W, Yau W-M, Tycko R (2011) J Am Chem Soc 133:4018–4029PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  • Lucia Banci
    • 1
    • 2
    • 3
  • Olga Blaževitš
    • 1
  • Francesca Cantini
    • 1
    • 2
  • Jens Danielsson
    • 4
  • Lisa Lang
    • 4
  • Claudio Luchinat
    • 1
    • 2
    • 3
  • Jiafei Mao
    • 1
    • 3
    • 5
  • Mikael Oliveberg
    • 4
  • Enrico Ravera
    • 1
    • 2
  1. 1.Magnetic Resonance Center (CERM)University of FlorenceSesto FiorentinoItaly
  2. 2.Department of ChemistryUniversity of FlorenceSesto FiorentinoItaly
  3. 3.Fondazione Farmacogenomica FiorGen onlusSesto FiorentinoItaly
  4. 4.Arrhenius Laboratories of Natural Sciences, Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
  5. 5.Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations