JBIC Journal of Biological Inorganic Chemistry

, Volume 19, Issue 6, pp 893–902 | Cite as

The class Ib ribonucleotide reductase from Mycobacterium tuberculosis has two active R2F subunits

  • Marta Hammerstad
  • Åsmund K. Røhr
  • Niels H. Andersen
  • Astrid Gräslund
  • Martin Högbom
  • K. Kristoffer AnderssonEmail author
Original Paper


Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides, playing a crucial role in DNA repair and replication in all living organisms. Class Ib RNRs require either a diiron–tyrosyl radical (Y·) or a dimanganese–Y· cofactor in their R2F subunit to initiate ribonucleotide reduction in the R1 subunit. Mycobacterium tuberculosis, the causative agent of tuberculosis, contains two genes, nrdF1 and nrdF2, encoding the small subunits R2F-1 and R2F-2, respectively, where the latter has been thought to serve as the only active small subunit in the M. tuberculosis class Ib RNR. Here, we present evidence for the presence of an active Fe 2 III –Y· cofactor in the M. tuberculosis RNR R2F-1 small subunit, supported and characterized by UV–vis, X-band electron paramagnetic resonance, and resonance Raman spectroscopy, showing features similar to those for the M. tuberculosis R2F-2–Fe 2 III –Y· cofactor. We also report enzymatic activity of Fe 2 III –R2F-1 when assayed with R1, and suggest that the active M. tuberculosis class Ib RNR can use two different small subunits, R2F-1 and R2F-2, with similar activity.


Ribonucleotide reductase R2 Tyrosyl radical Mycobacterium tuberculosis Iron 



Electron paramagnetic resonance


Enzyme unit


N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid


Ribonucleotide reductase



This work was financially supported by the Norwegian Research Council through projects 214239/F20 and 218412/F50 (K.K.A.) and CMST COST Action CM1003 (K.K.A. and A.G.), the Swedish Research Council [2010-5061 (M.H.) and 2011-4850 (A.G.)], the Swedish Foundation for Strategic Research, and the Knut and Alice Wallenberg Foundation (M.H.) Travel grants were provided by the MLSUiO program for molecular life science research at the University of Oslo, and the National Graduate School in Structural Biology (BioStruct) (UiT/NorStruct). We thank Hans-Petter Hersleth (University of Oslo) for useful discussions.


  1. 1.
    Nordlund N, Reichard P (2006) Annu Rev Biochem 75:681–706PubMedCrossRefGoogle Scholar
  2. 2.
    Tomter AB, Zoppellaro G, Andersen NH, Hersleth HP, Hammerstad M, Rohr AK, Sandvik GK, Strand KR, Nilsson GE, Bell CB, Barra AL, Blasco E, Le Pape L, Solomon EI, Andersson KK (2013) Coord Chem Rev 257:3–26CrossRefGoogle Scholar
  3. 3.
    Andersson KK (ed) (2008) Ribonucleotide reductase. Nova, HauppaugeGoogle Scholar
  4. 4.
    Lundin D, Torrents E, Poole AM, Sjoberg BM (2009) BMC Genom 10:589CrossRefGoogle Scholar
  5. 5.
    Voevodskaya N, Lendzian F, Ehrenberg A, Graslund A (2007) FEBS Lett 581:3351–3355PubMedCrossRefGoogle Scholar
  6. 6.
    Jiang W, Yun D, Saleh L, Barr EW, Xing G, Hoffart LM, Maslak MA, Krebs C, Bollinger JM (2007) Science 316:1188–1191PubMedCrossRefGoogle Scholar
  7. 7.
    Booker S, Stubbe J (1993) Proc Natl Acad Sci USA 90:8352–8356PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Fontecave M, Eliasson R, Reichard P (1989) J Biol Chem 264:9164–9170PubMedGoogle Scholar
  9. 9.
    Yang FD, Curran SC, Li LS, Avarbock D, Graf JD, Chua MM, Lui GZ, Salem J, Rubin H (1997) J Bacteriol 179:6408–6415PubMedCentralPubMedGoogle Scholar
  10. 10.
    Dawes SS, Warner DF, Tsenova L, Timm J, McKinney JD, Kaplan G, Rubin H, Mizrahi V (2003) Infect Immun 71:6124–6131PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Poole AM, Logan DT, Sjoberg BM (2002) J Mol Evol 55:180–196PubMedCrossRefGoogle Scholar
  12. 12.
    Liu A, Potsch S, Davydov A, Barra AL, Rubin H, Graslund A (1998) Biochemistry 37:16369–16377PubMedCrossRefGoogle Scholar
  13. 13.
    Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Chem Rev 100:235–349PubMedCrossRefGoogle Scholar
  14. 14.
    Nurbo J, Roos AK, Muthas D, Wahlstrom E, Ericsson DJ, Lundstedt T, Unge T, Karlen A (2007) J Pept Sci 13:822–832PubMedCrossRefGoogle Scholar
  15. 15.
    Mowa MB, Warner DF, Kaplan G, Kana BD, Mizrahi V (2009) J Bacteriol 191:985–995PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Conner R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Nature 396:190–198CrossRefGoogle Scholar
  17. 17.
    Tomter AB, Bell CB, Rohr AK, Andersson KK, Solomon EI (2008) Biochemistry 47:11300–11309PubMedCrossRefGoogle Scholar
  18. 18.
    Rohr AK, Hersleth HP, Andersson KK (2010) Angew Chem Int Ed 49:2324–2327CrossRefGoogle Scholar
  19. 19.
    Magnusson KE, Edebo L (1976) Biotechnol Bioeng 18:865–883PubMedCrossRefGoogle Scholar
  20. 20.
    Atkin CL, Thelande L, Reichard P, Lang G (1973) J Biol Chem 248:7464–7472PubMedGoogle Scholar
  21. 21.
    Tomter AB, Zoppellaro G, Bell CB, Barra AL, Andersen NH, Solomon EI, Andersson KK (2012) PLoS One 7:e33436PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Castner TG (1959) Phys Rev 115:1506–1515CrossRefGoogle Scholar
  23. 23.
    Portis AM (1953) Phys Rev 91:1071–1078CrossRefGoogle Scholar
  24. 24.
    Zoppellaro G, Harbitz E, Kaur R, Ensign AA, Bren KL, Andersson KK (2008) J Am Chem Soc 130:15348–15360PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Stoll S, Schweiger A (2006) J Magn Reson 178:42–55PubMedCrossRefGoogle Scholar
  26. 26.
    McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley, New YorkCrossRefGoogle Scholar
  27. 27.
    Thelander L, Sjöberg B-M, Eriksson S (1978) Methods Enzymol 51:227–237CrossRefGoogle Scholar
  28. 28.
    Petersson L, Graslund A, Ehrenberg A, Sjoberg BM, Reichard P (1980) J Biol Chem 255:6706–6712PubMedGoogle Scholar
  29. 29.
    Liu AM, Barra AL, Rubin H, Lu GZ, Graslund A (2000) J Am Chem Soc 122:1974–1978CrossRefGoogle Scholar
  30. 30.
    Andersson KK, Schmidt PP, Katterle B, Strand KR, Palmer AE, Lee SK, Solomon EI, Graslund A, Barra AL (2003) J Biol Inorg Chem 8:235–247PubMedGoogle Scholar
  31. 31.
    Svistunenko DA, Jones GA (2009) Phys Chem Chem Phys 11:6600–6613PubMedCrossRefGoogle Scholar
  32. 32.
    Sahlin M, Petersson L, Graslund A, Ehrenberg A, Sjoberg BM, Thelander L (1987) Biochemistry 26:5541–5548PubMedCrossRefGoogle Scholar
  33. 33.
    Galli C, Atta M, Andersson KK, Graslund A, Brudvig GW (1995) J Am Chem Soc 117:740–746CrossRefGoogle Scholar
  34. 34.
    Himo F, Graslund A, Eriksson LA (1997) Biophys J 72:1556–1567PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Allard P, Barra AL, Andersson KK, Schmidt PP, Atta M, Graslund A (1996) J Am Chem Soc 118:895–896CrossRefGoogle Scholar
  36. 36.
    Backes G, Sahlin M, Sjoberg BM, Loehr TM, Sandersloehr J (1989) Biochemistry 28:1923–1929PubMedCrossRefGoogle Scholar
  37. 37.
    Wilson EB (1934) Phys Rev 45:706–714CrossRefGoogle Scholar
  38. 38.
    van Dam PJ, Willems JP, Schmidt PP, Potsch S, Barra AL, Hagen WR, Hoffman BM, Andersson KK, Graslund A (1998) J Am Chem Soc 120:5080–5085CrossRefGoogle Scholar
  39. 39.
    Tomter AB, Zoppellaro G, Schmitzberger F, Andersen NH, Barra AL, Engman H, Nordlund P, Andersson KK (2011) PLoS One 6:e25022PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Mendelovici E, Frost RL, Kloprogge T (2000) J Raman Spectrosc 31:1121–1126CrossRefGoogle Scholar
  41. 41.
    Johnson CR, Ludwig M, Asher SA (1986) J Am Chem Soc 108:905–912CrossRefGoogle Scholar
  42. 42.
    Uppsten M, Davis J, Rubin H, Uhlin U (2004) FEBS Lett 569:117–122PubMedCrossRefGoogle Scholar
  43. 43.
    Climent I, Sjoberg BM, Huang CY (1991) Biochemistry 30:5164–5171PubMedCrossRefGoogle Scholar
  44. 44.
    Fisher A, Yang FD, Rubin H, Cooperman BS (1993) J Med Chem 36:3859–3862PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang Y, An X, Stubbe J, Huang M (2013) J Biol Chem 288:13951–13959PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Cotruvo JA, Stubbe J (2011) Annu Rev Biochem 80:733–767PubMedCrossRefGoogle Scholar
  47. 47.
    Crona M, Torrents E, Rohr AK, Hofer A, Furrer E, Tomter AB, Andersson KK, Sahlin M, Sjoberg BM (2011) J Biol Chem 286:33053–33060PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Cotruvo JA, Stubbe J (2011) Biochemistry 50:1672–1681PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Cotruvo JA, Stubbe J (2010) Biochemistry 49:1297–1309PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Hammerstad M, Hersleth HP, Tomter AB, Rohr AK, Andersson KK (2013) ACS Chem Biol. doi: 10.1021/cb400757h PubMedGoogle Scholar
  51. 51.
    Boal AK, Cotruvo JA, Stubbe J, Rosenzweig AC (2010) Science 329:1526–1530PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Cotruvo JA, Stich TA, Britt DR, Stubbe J (2013) J Am Chem Soc 135:4027–4039PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    DeLano WL (2002) PyMOL. DeLano Scientific, San CarlosGoogle Scholar
  54. 54.
    Hanson MA, Schmidt PP, Strand KR, Graslund A, Solomon EI, Andersson KK (1999) J Am Chem Soc 121:6755–6756CrossRefGoogle Scholar
  55. 55.
    Tomter AB, Zoppellaro G, Bell CB, Barra AL, Andersen NH, Solomon EI, Andersson KK (2012) PLoS One 7:e33436PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  • Marta Hammerstad
    • 1
    • 3
  • Åsmund K. Røhr
    • 1
  • Niels H. Andersen
    • 2
  • Astrid Gräslund
    • 3
  • Martin Högbom
    • 3
  • K. Kristoffer Andersson
    • 1
    Email author
  1. 1.Department of Biosciences, Section of Biochemistry and Molecular BiologyUniversity of OsloOsloNorway
  2. 2.Department of ChemistryUniversity of OsloOsloNorway
  3. 3.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden

Personalised recommendations