Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 19, Issue 6, pp 813–828 | Cite as

Selenite-mediated production of superoxide radical anions in A549 cancer cells is accompanied by a selective increase in SOD1 concentration, enhanced apoptosis and Se–Cu bonding

  • Claire M. Weekley
  • Gloria Jeong
  • Michael E. Tierney
  • Farjaneh Hossain
  • Aung Min Maw
  • Anu Shanu
  • Hugh H. Harris
  • Paul K. WittingEmail author
Original Paper

Abstract

Selenite may exert its cytotoxic effects against cancer cells via the generation of reactive oxygen species (ROS). We investigated sources of, and the cellular response to, superoxide radical anion (O2 ·−) generated in human A549 lung cancer cells after treatment with selenite. A temporal delay was observed between selenite treatment and increases in O2 ·− production and biomarkers of apoptosis/necrosis, indicating that the reduction of selenite by the glutathione reductase/NADPH system (yielding O2 ·−) is a minor contributor to ROS production under these conditions. By contrast, mitochondrial and NADPH oxidase O2 ·− generation were the major contributors. Treatment with a ROS scavenger [poly(ethylene glycol)-conjugated superoxide dismutase (SOD) or sodium 4,5-dihydroxybenzene-1,3-disulfonate] 20 h after the initial selenite treatment inhibited both ROS generation and apoptosis determined at 24 h. In addition, SOD1 was selectively upregulated and its perinuclear cytoplasmic distribution was colocalised with the cellular distribution of selenium. Interestingly, messenger RNA for manganese superoxide dismutase, catalase, inducible haem oxygenase 1 and glutathione peroxidase either remained unchanged or showed a delayed response to selenite treatment. Colocalisation of Cu and Se in these cells (Weekley et al. in J. Am. Chem. Soc. 133:18272–18279, 2011) potentially results from the formation of a Cu–Se species, as indicated by Cu K-edge extended X-ray absorption fine structure spectra. Overall, SOD1 is upregulated in response to selenite-mediated ROS generation, and this likely leads to an accumulation of toxic hydrogen peroxide that is temporally related to decreased cancer cell viability. Increased expression of SOD1 gene/protein coupled with formation of a Cu–Se species may explain the colocalisation of Cu and Se observed in these cells.

Graphical abstract

Keywords

Selenium Cell viability Reactive oxygen species Synchrotron radiation Superoxide radical anion 

Abbreviations

DHR-123

Dihydrorhodamine 123

DMPO

5,5-Dimethyl-1-pyrroline N-oxide

EPR

Electron paramagnetic resonance

EXAFS

Extended X-ray absorption fine structure

GPx

Glutathione peroxidase

GSSeSG

Selenodiglutathione

hCCS245Sec

Selenocysteine variant of the human copper chaperone

HO-1

Haem oxygenase 1

HSe

Hydrogen selenide

LDH

Lactate dehydrogenase

mRNA

Messenger RNA

PEG-SOD

Poly(ethylene glycol)-conjugated superoxide dismutase

R-123

Rhodamine 123

ROS

Reactive oxygen species

SOD

Superoxide dismutase

XANES

X-ray absorption near-edge structure

Notes

Acknowledgments

A549 cells and tiron were gifts from Aviva Levina and Shane Thomas, respectively. We thank Jade Aitken, Stefan Vogt and Lydia Finney for assistance with synchrotron data collection and Ian Musgrave for assistance with cell culture. We are grateful to Ninian Blackburn for providing spectra of hCCS245Sec, and to Graham George and Enzo Lombi for providing small-molecule Cu spectra. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. We acknowledge travel funding provided by the International Synchrotron Access Program managed by the Australian Synchrotron and funded by the Australian Government and research funding from the Australian Research Council (DP0985807) and the Australian Synchrotron Postgraduate Award (C.M.W.). We acknowledge that part of this work was undertaken at the XAS beamline at the Australian Synchrotron (Clayton, Australia).

Supplementary material

775_2014_1113_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1175 kb)

References

  1. 1.
    Combs GF Jr (2005) J Nutr 135:343–347PubMedGoogle Scholar
  2. 2.
    Shen HM, Yang CF, Ding WX, Liu J, Ong CN (2001) Free Radic Biol Med 30:9–21PubMedCrossRefGoogle Scholar
  3. 3.
    Zhong W, Oberley T (2001) Cancer Res 61:7071–7078PubMedGoogle Scholar
  4. 4.
    Wang H-T, Yang X-L, Zhang Z-H, Lu J-L, Xu H-B (2002) Biol Trace Elem Res 85:241–254PubMedCrossRefGoogle Scholar
  5. 5.
    Zhu Y, Xu H, Huang K (2002) J Inorg Biochem 90:43–50PubMedCrossRefGoogle Scholar
  6. 6.
    Park S-H, Kim J-H, Chi GY, Kim G-Y, Chang Y-C, Moon S-K et al (2012) Toxicol Lett 212:252–261PubMedCrossRefGoogle Scholar
  7. 7.
    Nilsonne G, Sun X, Nyström C, Rundlöf A-K, Potamitou Fernandes A, Björnstedt M et al (2006) Free Radic Biol Med 41:874–885PubMedCrossRefGoogle Scholar
  8. 8.
    Husbeck B, Nonn L, Peehl DM, Knox SJ (2006) Prostate 66:218–225PubMedCrossRefGoogle Scholar
  9. 9.
    Ip C, Ganther HE (1990) Cancer Res 50:1206–1211PubMedGoogle Scholar
  10. 10.
    Kumar S, Björnstedt M, Holmgren A (1992) Eur J Biochem 207:435–439PubMedCrossRefGoogle Scholar
  11. 11.
    Björnstedt M, Kumar S, Holmgren A (1992) J Biol Chem 267:8030–8034PubMedGoogle Scholar
  12. 12.
    Wallenberg M, Olm E, Hebert C, Björnstedt M, Fernandes AP (2010) Biochem J 429:85–93PubMedCrossRefGoogle Scholar
  13. 13.
    Xiang N, Zhao R, Zhong W (2009) Cancer Chemother Pharmacol 63:351–362PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Li J, Zuo L, Shen T, Xu C-M, Zhang Z-N (2003) J Trace Elem Med Biol 17:19–26PubMedCrossRefGoogle Scholar
  15. 15.
    Ma Q, Fang H, Shang W, Liu L, Xu Z, Ye T et al (2011) J Biol Chem 286:27573–27581PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kim T-S, Yun BY, Kim IY (2003) Biochem Pharmacol 66:2301–2311PubMedCrossRefGoogle Scholar
  17. 17.
    Li Z, Shi K, Guan L, Cao T, Jiang Q, Yang Y et al (2010) FEBS Lett 584:2291–2297PubMedCrossRefGoogle Scholar
  18. 18.
    Kim EH, Sohn S, Kwon HJ, Kim SU, Kim M-J (2007) Cancer Res 67:6314–6324PubMedCrossRefGoogle Scholar
  19. 19.
    Weekley CM, Aitken JB, Vogt S, Finney LA, Paterson DJ, de Jonge MD et al (2011) J Am Chem Soc 133:18272–18279PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Davis R, Spallholz J, Pence B (1998) Nutr Cancer 32:181–189PubMedCrossRefGoogle Scholar
  21. 21.
    Zeng H, Botnen JH (2004) J Nutr Biochem 15:179–184PubMedCrossRefGoogle Scholar
  22. 22.
    Kezhou W, Stowe HD, House AM, Chou K, Thiel T (1987) J Anim Sci 64:1467–1475PubMedGoogle Scholar
  23. 23.
    Tatum L, Shankar P, Boylan LM, Spallholz J (2000) Biol Trace Elem Res 77:241–249PubMedCrossRefGoogle Scholar
  24. 24.
    Weber T, Dalen H, Andera L, Nègre-Salvayre A, Augé N, Sticha M et al (2003) Biochemistry 42:4277–4291PubMedCrossRefGoogle Scholar
  25. 25.
    Kadiiska MB, maples KR, Mason RP (1989) Arch Biochem Biophys 275:98–111PubMedCrossRefGoogle Scholar
  26. 26.
    Witting PK, Travascio P, Sen D, Mark AG (2001) Inorg Chem 40:5017–5023PubMedCrossRefGoogle Scholar
  27. 27.
    Schnur RA, Newman SL (1990) J Immunol 144:4765–4772PubMedGoogle Scholar
  28. 28.
    Tarpey MM, Fridovich I (2001) Circ Res 89:224–236PubMedCrossRefGoogle Scholar
  29. 29.
    Ahmed H, Schott EJ, Gauthier JD, Vasta GR (2003) Anal Biochem 318:132–141PubMedCrossRefGoogle Scholar
  30. 30.
    Wilson SR, Zucker PA, Huang RRC, Spector A (1989) J Am Chem Soc 111:5936–5939SCrossRefGoogle Scholar
  31. 31.
    Witting PK, Song C, Hsu S, Parry SN, Aran R, Geczy C, Freedman SB (2011) Free Radic Biol Med 51:1390–1398PubMedCrossRefGoogle Scholar
  32. 32.
    Thomas SR, Schulz E, Jr Keaney JF (2006) Free Radic Biol Med 41:681–688PubMedCrossRefGoogle Scholar
  33. 33.
    Vogt S (2003) J Phys IV 104:635–638Google Scholar
  34. 34.
    Mottley C, Connor HD, Mason RP (1986) Biochem Biophys Res Commun 141:622–628PubMedCrossRefGoogle Scholar
  35. 35.
    Witting PK, Rayner BS, Wu BJ, Ellis NA, Stocker R (2007) Cell Physiol Biochem 20:255–268PubMedCrossRefGoogle Scholar
  36. 36.
    Lee M, Rosario MC, Harris HH, Blankenship RE, Guss JM, Freeman HC (2009) J Biol Inorg Chem 14:329–345PubMedCrossRefGoogle Scholar
  37. 37.
    Barry AN, Blackburn NJ (2008) Biochemistry 47:4916–4928PubMedCrossRefGoogle Scholar
  38. 38.
    Ralle M, Berry SM, Nilges MJ, Gieselman MD, van der Donk WA, Lu Y et al (2004) J Am Chem Soc 126:7244–7256PubMedCrossRefGoogle Scholar
  39. 39.
    Siluvai GS, Nakano M, Mayfield M, Blackburn NJ (2010) J Biol Inorg Chem 16:285–297PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Hsieh HS, Ganther HE (1975) Biochemistry 14:1632–1636PubMedCrossRefGoogle Scholar
  41. 41.
    Ganther HE (1971) Biochemistry 10:4089–4098PubMedCrossRefGoogle Scholar
  42. 42.
    Seko Y, Saito Y, Kitahara J, Imura N (1989) In: Wendel A (ed) Selenium in biology and medicine. Springer, Berlin, pp 70–73CrossRefGoogle Scholar
  43. 43.
    Kitahara J, Seko Y, Imura N (1993) Arch Toxicol 67:497–501PubMedCrossRefGoogle Scholar
  44. 44.
    Yan L, Spallholz JE (1993) Biochem Pharmacol 45:429–437PubMedGoogle Scholar
  45. 45.
    Henderson LM, Chappell JB (1993) Eur J Biochem 217:973–980PubMedCrossRefGoogle Scholar
  46. 46.
    Fernandes AP, Wallenberg M, Gandin V, Misra S, Tisato F, Marzano C et al (2012) PLoS ONE 7:e50727PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Davis R, Spallholz JE (1996) Biochem Pharmacol 51:1015–1020PubMedCrossRefGoogle Scholar
  48. 48.
    Dauplais M, Lazard M, Blanquet S, Plateau P (2013) PLoS ONE 8:e54353PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Science 284:805–808PubMedCrossRefGoogle Scholar
  50. 50.
    Jacob C, Maret W, Vallee BL (1999) Proc Natl Acad Sci USA 96:1910–1914PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Somwar R, Erdjument-Bromage H, Larsson E, Shum D, Lockwood WW, Yang G et al (2011) Proc Natl Acad Sci USA 108:16375–16380PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Reid ME, Stratton MS, Lillico AJ, Fakih M, Natarajan R, Clark LC et al (2004) J Trace Elem Med Biol 18:69–74PubMedCrossRefGoogle Scholar
  53. 53.
    Thiry C, Ruttens A, De Temmerman L, Schneider Y-J, Pussemier L (2012) Food Chem 130:767–784CrossRefGoogle Scholar
  54. 54.
    Burk RF, Norsworthy BK, Hill KE, Motley AK, Byrne DW (2006) Cancer Epidemiol Biomark Prev 15:804–810CrossRefGoogle Scholar
  55. 55.
    Walther FJ, Wade AB, Warburton D, Forman HJ (1991) Am J Respir Cell Mol Biol 4:364–368PubMedCrossRefGoogle Scholar
  56. 56.
    Beckman JS, Minor RL Jr, White CW, Repine JE, Rosen GM, Freeman BA (1988) J Biol Chem 263:6884–6892PubMedGoogle Scholar
  57. 57.
    Markey BA, Phan SH, Varani J, Ryan US, Ward PA (1990) Free Radic Biol Med 9:307–314PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  • Claire M. Weekley
    • 1
  • Gloria Jeong
    • 2
  • Michael E. Tierney
    • 2
  • Farjaneh Hossain
    • 2
  • Aung Min Maw
    • 2
  • Anu Shanu
    • 2
  • Hugh H. Harris
    • 1
  • Paul K. Witting
    • 2
    Email author
  1. 1.School of Chemistry and PhysicsThe University of AdelaideAdelaideAustralia
  2. 2.The Discipline of PathologyThe University of SydneySydneyAustralia

Personalised recommendations