JBIC Journal of Biological Inorganic Chemistry

, Volume 19, Issue 6, pp 787–803 | Cite as

Insights into the mechanisms underlying the antiproliferative potential of a Co(II) coordination compound bearing 1,10-phenanthroline-5,6-dione: DNA and protein interaction studies

  • Daniel V. Luís
  • Joana Silva
  • Ana Isabel Tomaz
  • Rodrigo F. M. de Almeida
  • Miguel Larguinho
  • Pedro V. Baptista
  • Luísa M. D. R. S. Martins
  • Telma F. S. Silva
  • Pedro M. Borralho
  • Cecília M. P. Rodrigues
  • António S. Rodrigues
  • Armando J. L. Pombeiro
  • Alexandra R. Fernandes
Original Paper


The very high antiproliferative activity of [Co(Cl)(H2O)(phendione)2][BF4] (phendione is 1,10-phenanthroline-5,6-dione) against three human tumor cell lines (half-maximal inhibitory concentration below 1 μM) and its slight selectivity for the colorectal tumor cell line compared with healthy human fibroblasts led us to explore the mechanisms of action underlying this promising antitumor potential. As previously shown by our group, this complex induces cell cycle arrest in S phase and subsequent cell death by apoptosis and it also reduces the expression of proteins typically upregulated in tumors. In the present work, we demonstrate that [Co(Cl)(phendione)2(H2O)][BF4] (1) does not reduce the viability of nontumorigenic breast epithelial cells by more than 85 % at 1 μM, (2) promotes the upregulation of proapoptotic Bax and cell-cycle-related p21, and (3) induces release of lactate dehydrogenase, which is partially reversed by ursodeoxycholic acid. DNA interaction studies were performed to uncover the genotoxicity of the complex and demonstrate that even though it displays K b (± standard error of the mean) of (3.48 ± 0.03) × 105 M−1 and is able to produce double-strand breaks in a concentration-dependent manner, it does not exert any clastogenic effect ex vivo, ruling out DNA as a major cellular target for the complex. Steady-state and time-resolved fluorescence spectroscopy studies are indicative of a strong and specific interaction of the complex with human serum albumin, involving one binding site, at a distance of approximately 1.5 nm for the Trp214 indole side chain with log K b ~4.7, thus suggesting that this complex can be efficiently transported by albumin in the blood plasma.


Cobalt 1,10-Phenanthroline-5,6-dione Apoptosis DNA cleavage Human serum albumin 



Part of this work was financed by Portuguese national funds through FCT, the Portuguese Foundation for Science and Technology, within the scope of projects PTDC/QuiQui/101187/2008, PEst-OE/QUI/UI0612/2013, and PEst-OE/QUI/UI0536/2013, as well as Ciência2008 and Investigator FCT-POPH initiatives. We thank Ana C. Silva for fruitful discussions.

Supplementary material

775_2014_1110_MOESM1_ESM.pdf (1.6 mb)
Supplementary information (PDF 1633 kb)


  1. 1.
    Hannon MJ (2007) Pure Appl Chem 2243–2261Google Scholar
  2. 2.
    Meggers E (2009) Chem Commun 1001–1010. doi: 10.1039/b813568a
  3. 3.
    Zhang CX, Lippard SJ (2003) Curr Opin Chem Biol 7:481–489PubMedCrossRefGoogle Scholar
  4. 4.
    Cantero G, Pastor N, Mateos S, Campanella C, Cortes F (2006) Mutat Res 599:160–166. doi: 10.1016/j.mrfmmm.2006.02.006 PubMedCrossRefGoogle Scholar
  5. 5.
    Zeglis BM, Pierre VC, Barton JK (2007) Chem Commun 4565–4579. doi: 10.1039/b710949k
  6. 6.
    Williams NH, Takasaki B, Wall M, Chin J (1999) Acc Chem Res 32:485–493CrossRefGoogle Scholar
  7. 7.
    Jiang Q, Xiao N, Shi PF, Zhu YG, Guo ZJ (2007) Coord Chem Rev 251:1951–1972. doi: 10.1016/j.ccr.2007.02.013 CrossRefGoogle Scholar
  8. 8.
    Pasini A, Zunino F (1987) Angew Chem Int Ed Engl 26:615–624. doi: 10.1002/anie.198706151 CrossRefGoogle Scholar
  9. 9.
    Barton JK (1986) Science 233:727–734PubMedCrossRefGoogle Scholar
  10. 10.
    Wang J, Cai X, Rivas G, Shiraishi H, Farias PA, Dontha N (1996) Anal Chem 68:2629–2634PubMedCrossRefGoogle Scholar
  11. 11.
    Wheate NJ, Brodie CR, Collins JG, Kemp S, Aldrich-Wright JR (2007) Mini Rev Med Chem 7(6):627–648PubMedCrossRefGoogle Scholar
  12. 12.
    Cusumano M, Di Pietro ML, Giannetto A (2006) Inorg Chem 45:230–235. doi: 10.1021/ic050880o PubMedCrossRefGoogle Scholar
  13. 13.
    Liu HK, Sadler PJ (2011) Acc Chem Res 44(5):349–359. doi: 10.1021/ar100140e Google Scholar
  14. 14.
    Dhar S, Senapati D, Das PK, Chattopadhyay P, Nethaji M, Chakravarty AR (2003) J Am Chem Soc 125:12118–12124. doi: 10.1021/ja036681q PubMedCrossRefGoogle Scholar
  15. 15.
    Patra AK, Dhar S, Nethaji M, Chakravarty AR (2003) Chem Commun 1562–1563Google Scholar
  16. 16.
    Reddy PA, Santra BK, Nethaji M, Chakravarty AR (2004) J Inorg Biochem 98:377–386PubMedCrossRefGoogle Scholar
  17. 17.
    Ranford JD, Sadler PJ, Tocher DA (1993) J Chem Soc Dalton Trans 3393–3399. doi: 10.1039/DT9930003393
  18. 18.
    Bruijnincx PC, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206. doi: 10.1016/j.cbpa.2007.11.013 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Gabbiani C (2009) Proteins as possible targets for antitumor metal complexes. Biophysical studies of their interactions. Firenze University Press, FlorenceGoogle Scholar
  20. 20.
    Hernandes MZ, Pontes FJ de S, Coelho LCD, Moreira DRM, Pereira VRA, Leite ACL (2010) Curr Med Chem 17:3739–3750Google Scholar
  21. 21.
    Pessoa JC, Tomaz I (2010) Curr Med Chem 17:3701–3738PubMedCrossRefGoogle Scholar
  22. 22.
    US Food and Drug Administration (2006) Requirements on content and format of labeling for human prescription drug and biological products, section 12: clinical pharmacology, subsection 12.3: pharmacokinetics, p 262. http://www.fda.gov/OHRMS/DOCKETS/98fr/00n-1269-nfr0001-03.pdf
  23. 23.
    Colmenarejo G (2003) Med Res Rev 23:275–301. doi: 10.1002/med.10039 PubMedCrossRefGoogle Scholar
  24. 24.
    Kratz F (2008) J Control Release 132:171–183. doi: 10.1016/j.jconrel.2008.05.010 PubMedCrossRefGoogle Scholar
  25. 25.
    Maeda H (2010) Bioconjug Chem 21:797–802. doi: 10.1021/bc100070g PubMedCrossRefGoogle Scholar
  26. 26.
    Silva TFS, Smoleński P, Martins LMDRS, Guedes da Silva MFC, Fernandes AR, Luis D, Silva A, Santos S, Borralho PM, Rodrigues CMP, Pombeiro AJL (2013) Eur J Inorg Chem 2013:3651–3658. doi: 10.1002/ejic.201300197 CrossRefGoogle Scholar
  27. 27.
    Silva A, Luis D, Santos S, Silva J, Mendo AS, Coito L, Silva TF, da Silva MF, Martins LM, Pombeiro AJ, Borralho PM, Rodrigues CM, Cabral MG, Videira PA, Monteiro C, Fernandes AR (2013) Drug Metab Drug Interact 28:167–176. doi: 10.1515/dmdi-2013-0015 Google Scholar
  28. 28.
    Heintz RA, Smith JA, Szalay PS, Weisgerber A, Dunbar KR (2002) In: Coucouvanis D (ed) Inorganic synthesis, vol 33. Wiley, New York, pp 75–107Google Scholar
  29. 29.
    Silva TFS, Martins LMDRS, Guedes da Silva MFC, Fernandes AR, Silva A, Borralho PM, Santos S, Rodrigues CMP, Pombeiro AJL (2012) Dalton Trans 41:12888–12897. doi: 10.1039/C2DT11577H PubMedCrossRefGoogle Scholar
  30. 30.
    Schmittgen TD, Livak KJ (2008) Nat Protoc 3:1101–1108PubMedCrossRefGoogle Scholar
  31. 31.
    Li Y, Liu J, Li Q (2010) Mol Carcinog 49:566–581. doi: 10.1002/mc.20623 PubMedGoogle Scholar
  32. 32.
    Rahman KW, Li Y, Wang Z, Sarkar SH, Sarkar FH (2006) Cancer Res 66:4952–4960. doi: 10.1158/0008-5472.CAN-05-3918 PubMedCrossRefGoogle Scholar
  33. 33.
    Kanakis CD, Tarantilis PA, Polissiou MG, Diamantoglou S, Tajmir-Riahi HA (2007) Cell Biochem Biophys 49:29–36PubMedCrossRefGoogle Scholar
  34. 34.
    Conde J, Larguinho M, Cordeiro A, Raposo LR, Costa PM, Santos S, Diniz MS, Fernandes AR, Baptista PV (2014) Nanotoxicology 8:521–532Google Scholar
  35. 35.
    Jakusch T, Hollender D, Enyedy EA, Gonzalez CS, Montes-Bayon M, Sanz-Medel A, Costa Pessoa J, Tomaz I, Kiss T (2009) Dalton Trans 2428–2437. doi: 10.1039/B817748A
  36. 36.
    Valeur B (2001) Molecular fluorescence. Wiley-VCH, Weinheim, pp 155–199Google Scholar
  37. 37.
    Hampton MB, Orrenius S (1997) FEBS Lett 414:552–556PubMedCrossRefGoogle Scholar
  38. 38.
    Dosa PI, Ward T, Castro RE, Rodrigues CM, Steer CJ (2013) ChemMedChem 8:1002–1011. doi: 10.1002/cmdc.201300059 PubMedCrossRefGoogle Scholar
  39. 39.
    Takaki K, Higuchi Y, Hashii M, Ogino C, Shimizu N (2013) J Biosci Bioeng. doi: 10.1016/j.jbiosc.2013.06.003 PubMedGoogle Scholar
  40. 40.
    Tang HL, Yuen KL, Tang HM, Fung MC (2009) Br J Cancer 100:118–122. doi: 10.1038/sj.bjc.6604802 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Xie X, Wang S, Wong TC, Fung M (2013) Cancer Cell Int 13:63PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Amaral JD, Castro RE, Steer CJ, Rodrigues CM (2009) Trends Mol Med 15:531–541. doi: 10.1016/j.molmed.2009.09.005 PubMedCrossRefGoogle Scholar
  43. 43.
    Amaral JD, Castro RE, Sola S, Steer CJ, Rodrigues CM (2007) J Biol Chem 282:34250–34259. doi: 10.1074/jbc.M704075200 PubMedCrossRefGoogle Scholar
  44. 44.
    Taguchi T, Kato Y, Baba Y, Nishimura G, Tanigaki Y, Horiuchi C, Mochimatsu I, Tsukuda M (2004) Oncol Rep 11:421–426PubMedGoogle Scholar
  45. 45.
    Gartel AL, Tyner AL (2002) Mol Cancer Ther 1:639–649PubMedGoogle Scholar
  46. 46.
    Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha MA, Palaniandavar M (2011) Dalton Trans 40:3245–3256. doi: 10.1039/c0dt01360a PubMedCrossRefGoogle Scholar
  47. 47.
    Karidi K, Garoufis A, Tsipis A, Hadjiliadis N, den Dulk H, Reedijk J (2005) Dalton Trans 1176–1187. doi: 10.1039/b418838a4
  48. 48.
    Babu MSS, Reddy KH, Krishna PG (2007) Polyhedron 26:572–580. doi: 10.1016/j.poly.2006.08.026 CrossRefGoogle Scholar
  49. 49.
    Modica-Napolitano JS, Aprille JR (2001) Adv Drug Deliv Rev 49:63–70PubMedCrossRefGoogle Scholar
  50. 50.
    Obe G, Johannes C, Ritter S (2010) Mutat Res 701:3–11. doi: 10.1016/j.mrgentox.2010.05.010 PubMedCrossRefGoogle Scholar
  51. 51.
    Jung Y, Lippard J (2007) Chem Rev 107:1387–1407PubMedCrossRefGoogle Scholar
  52. 52.
    Matos CP, Valente A, Marques F, Adão P, Paula Robalo M, de Almeida RFM, Pessoa JC, Santos I, Helena Garcia M, Tomaz AI (2013) Inorg Chim Acta 394:616–626. doi: 10.1016/j.ica.2012.09.026 CrossRefGoogle Scholar
  53. 53.
    Demoro B, de Almeida RFM, Marques F, Matos CP, Otero L, Costa Pessoa J, Santos I, Rodriguez A, Moreno V, Lorenzo J, Gambino D, Tomaz AI (2013) Dalton Trans 42:7131–7146. doi: 10.1039/C3DT00028A PubMedCrossRefGoogle Scholar
  54. 54.
    Rohacova J, Marin ML, Miranda MA (2010) J Phys Chem B 114:4710–4716. doi: 10.1021/jp911114n PubMedCrossRefGoogle Scholar
  55. 55.
    Honore B, Pedersen AO (1989) Biochem J 258:199–204PubMedCentralPubMedGoogle Scholar
  56. 56.
    Loura LM, de Almeida RF, Coutinho A, Prieto M (2003) Chem Phys Lipids 122:77–96PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  • Daniel V. Luís
    • 1
  • Joana Silva
    • 1
  • Ana Isabel Tomaz
    • 2
  • Rodrigo F. M. de Almeida
    • 3
  • Miguel Larguinho
    • 1
  • Pedro V. Baptista
    • 1
  • Luísa M. D. R. S. Martins
    • 4
    • 5
  • Telma F. S. Silva
    • 4
  • Pedro M. Borralho
    • 6
    • 7
  • Cecília M. P. Rodrigues
    • 6
    • 7
  • António S. Rodrigues
    • 8
  • Armando J. L. Pombeiro
    • 4
  • Alexandra R. Fernandes
    • 1
    • 4
    • 9
  1. 1.Departamento Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Centro de Ciências Moleculares e Materiais, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  3. 3.Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  4. 4.Centro de Química Estrutural, Complexo I, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  5. 5.Area Departamental de Engenharia QuímicaISELLisbonPortugal
  6. 6.Departamento de Bioquímica e Biologia Humana, Faculdade de FarmáciaUniversidade de LisboaLisbonPortugal
  7. 7.Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de FarmáciaUniversidade de LisboaLisbonPortugal
  8. 8.Centro de Investigação em Genética Molecular e Humana, Departamento de Genética, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal
  9. 9.Faculdade de EngenhariaUniversidade Lusófona de Humanidades e TecnologiasLisbonPortugal

Personalised recommendations