Peroxygenase reactions catalyzed by cytochromes P450

Minireview
Part of the following topical collections:
  1. Topical Issue in honor of Ivano Bertini

Abstract

Cytochromes P450 (P450s) catalyze monooxygenation of a wide range of less reactive organic molecules under mild conditions. By contrast with the general reductive oxygen activation pathway of P450s, an H2O2-shunt pathway does not require any supply of electrons and protons for the generation of a highly reactive intermediate (compound I). Because the low cost of H2O2 allows us to use it in industrial-scale synthesis, the H2O2-shunt pathway is an attractive process for monooxygenation reactions. This review focuses on the P450-catalyzed monooxygenation of organic molecules using H2O2 as the oxidant.

Keywords

Cytochrome Heme X-ray crystallography Site-directed mutagenesis Dioxygen 

References

  1. 1.
    Ortiz de Montellano PR (ed) (2005) Cytochrome P450: structure, mechanism, and biochemistry. Plenum, New YorkGoogle Scholar
  2. 2.
    Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2888PubMedCrossRefGoogle Scholar
  3. 3.
    Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105:2253–2277PubMedCrossRefGoogle Scholar
  4. 4.
    Whitehouse CJC, Bell SG, Wong LL (2012) Chem Soc Rev 41:1218–1260PubMedCrossRefGoogle Scholar
  5. 5.
    Fasan R (2012) ACS Catal 2:647–666CrossRefGoogle Scholar
  6. 6.
    Grogan G (2011) Curr Opin Chem Biol 15:241–248PubMedCrossRefGoogle Scholar
  7. 7.
    Jung ST, Lauchli R, Arnold FH (2011) Curr Opin Biotechnol 22:809–817PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    O’Reilly E, Kohler V, Flitsch SL, Turner NJ (2011) Chem Commun 47:2490–2501CrossRefGoogle Scholar
  9. 9.
    Schulz S, Girhard M, Urlacher VB (2012) ChemCatChem 4:1889–1895CrossRefGoogle Scholar
  10. 10.
    Sakaki T (2012) Biol Pharm Bull 35:844–849PubMedCrossRefGoogle Scholar
  11. 11.
    Urlacher VB, Girhard M (2012) Trends Biotechnol 30:26–36PubMedCrossRefGoogle Scholar
  12. 12.
    Dunford HB, Stillman JS (1976) Coord Chem Rev 19:187–251CrossRefGoogle Scholar
  13. 13.
    Nordblom GD, White RE, Coon MJ (1976) Arch Biochem Biophys 175:524–533PubMedCrossRefGoogle Scholar
  14. 14.
    Renneberg R, Scheller F, Ruckpaul K, Pirrwitz J, Mohr P (1978) FEBS Lett 96:349–353PubMedCrossRefGoogle Scholar
  15. 15.
    Hrycay EG, Gustafsson J-a, Ingelman-Sundberg M, Ernster L (1975) Biochem Biophys Res Commun 66:209–216PubMedCrossRefGoogle Scholar
  16. 16.
    Renneberg R, Capdevila J, Chacos N, Estabrook RW, Prough RA (1981) Biochem Pharmacol 30:843–848PubMedCrossRefGoogle Scholar
  17. 17.
    Holm KA, Engell RJ, Kupfer D (1985) Arch Biochem Biophys 237:477–489PubMedCrossRefGoogle Scholar
  18. 18.
    Koo LS, Tschirret-Guth RA, Straub WE, Moenne-Loccoz P, Loehr TM, Ortiz de Montellano PR (2000) J Biol Chem 275:14112–14123PubMedCrossRefGoogle Scholar
  19. 19.
    Ogura H, Nishida CR, Hoch UR, Perera R, Dawson JH, Ortiz de Montellano PR (2004) Biochemistry 43:14712–14721PubMedCrossRefGoogle Scholar
  20. 20.
    Anari MR, Josephy PD, Henry T, O’Brien PJ (1997) Chem Res Toxicol 10:582–588PubMedCrossRefGoogle Scholar
  21. 21.
    Bui PH, Hankinson O (2009) Mol Pharmacol 76:1031–1043PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Niraula NP, Kanth BK, Sohng JK, Oh TJ (2011) Enzyme Microb Technol 48:181–186PubMedCrossRefGoogle Scholar
  23. 23.
    Goyal S, Banerjee S, Mazumdar S (2012) Biochemistry 51:7880–7890PubMedCrossRefGoogle Scholar
  24. 24.
    Khan KK, He YA, He YQ, Halpert JR (2002) Chem Res Toxicol 15:843–853PubMedCrossRefGoogle Scholar
  25. 25.
    Matsumura H, Wakatabi M, Omi S, Ohtaki A, Nakamura N, Yohda M, Ohno H (2008) Biochemistry 47:4834–4842PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang Z, Li Y, Stearns RA, Ortiz De Montellano PR, Baillie TA, Tang W (2002) Biochemistry 41:2712–2718PubMedCrossRefGoogle Scholar
  27. 27.
    Gelb MH, Heimbrook DC, Malkonen P, Sligar SG (1982) Biochemistry 21:370–377PubMedCrossRefGoogle Scholar
  28. 28.
    Rabe KS, Kiko K, Niemeyer CM (2008) ChemBioChem 9:420–425PubMedCrossRefGoogle Scholar
  29. 29.
    Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Biol 4:1032–1038PubMedCrossRefGoogle Scholar
  30. 30.
    Sundaramoorthy M, Terner J, Poulos TL (1995) Structure 3:1367–1377PubMedCrossRefGoogle Scholar
  31. 31.
    Sundaramoorthy M, Terner J, Poulos TL (1998) Chem Biol 5:461–473PubMedCrossRefGoogle Scholar
  32. 32.
    Piontek K, Strittmatter E, Ullrich R, Grobe G, Pecyna MJ, Kluge M, Scheibner K, Hofrichter M, Plattner DA (2013) J Biol Chem 288:34767–34776PubMedCrossRefGoogle Scholar
  33. 33.
    Wang XS, Peter S, Ullrich R, Hofrichter M, Groves JT (2013) Angew Chem Int Ed 52:9238–9241CrossRefGoogle Scholar
  34. 34.
    Wang XS, Peter S, Kinne M, Hofrichter M, Groves JT (2012) J Am Chem Soc 134:12897–12900PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Goodin DB, Mcree DE (1993) Biochemistry 32:3313–3324PubMedCrossRefGoogle Scholar
  36. 36.
    Yamada Y, Fujiwara T, Sato T, Igarashi N, Tanaka N (2002) Nat Struct Biol 9:691–695PubMedCrossRefGoogle Scholar
  37. 37.
    Ko T-P, Day J, Malkin AJ, McPherson A (1999) Acta Crystallogr Sect D 55:1383–1394CrossRefGoogle Scholar
  38. 38.
    Watanabe Y, Ueno T (2003) Bull Chem Soc Jpn 76:1309–1322CrossRefGoogle Scholar
  39. 39.
    Ozaki SI, Roach MP, Matsui T, Watanabe Y (2001) Acc Chem Res 34:818–825CrossRefGoogle Scholar
  40. 40.
    Watanabe Y, Nakajima H, Ueno T (2007) Acc Chem Res 40:554–562PubMedCrossRefGoogle Scholar
  41. 41.
    Imai M, Shimada H, Watanabe Y, Matsushima-Hibiya Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Proc Natl Acad Sci USA 86:7823–7827PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Martinis SA, Atkins WM, Stayton PS, Sligar SG (1989) J Am Chem Soc 111:9252–9253CrossRefGoogle Scholar
  43. 43.
    Li Q-S, Ogawa J, Shimizu S (2001) Biochem Biophys Res Commun 280:1258–1261PubMedCrossRefGoogle Scholar
  44. 44.
    Schwaneberg U, Schmidt-Dannert C, Schmitt J, Schmid RD (1999) Anal Biochem 269:359–366PubMedCrossRefGoogle Scholar
  45. 45.
    Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K (2000) Lipids 35:365–371PubMedCrossRefGoogle Scholar
  46. 46.
    Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H (2001) Arch Biochem Biophys 394:45–53PubMedCrossRefGoogle Scholar
  47. 47.
    Li QS, Ogawa J, Schmid RD, Shimizu S (2005) Biosci Biotechnol Biochem 69:293–300PubMedCrossRefGoogle Scholar
  48. 48.
    Cirino PC, Arnold FH (2002) Adv Synth Catal 344:932–937CrossRefGoogle Scholar
  49. 49.
    Cirino PC, Arnold FH (2003) Angew Chem Int Ed 42:3299–3301CrossRefGoogle Scholar
  50. 50.
    Sanchez-Sanchez L, Roman R, Vazquez-Duhalt R (2012) Pestic Biochem Physiol 102:169–174CrossRefGoogle Scholar
  51. 51.
    Salazar O, Cirino PC, Arnold FH (2003) ChemBioChem 4:891–893PubMedCrossRefGoogle Scholar
  52. 52.
    Otey CR, Silberg JJ, Voigt CA, Endelman JB, Bandara G, Arnold FH (2004) Chem Biol 11:309–318PubMedCrossRefGoogle Scholar
  53. 53.
    Otey CR, Landwehr M, Endelman JB, Hiraga K, Bloom JD, Arnold FH (2006) PLoS Biol 4:789–798CrossRefGoogle Scholar
  54. 54.
    Otey CR, Bandara G, Lalonde J, Takahashi K, Arnold FH (2006) Biotechnol Bioeng 93:494–499PubMedCrossRefGoogle Scholar
  55. 55.
    Haines DC, Tomchick DR, Machius M, Peterson JA (2001) Biochemistry 40:13456–13465PubMedCrossRefGoogle Scholar
  56. 56.
    Vidal-Limon A, Aguila S, Ayala M, Batista CV, Vazquez-Duhalt R (2013) J Inorg Biochem 122:18–26PubMedCrossRefGoogle Scholar
  57. 57.
    Joo H, Lin ZL, Arnold FH (1999) Nature 399:670–673PubMedCrossRefGoogle Scholar
  58. 58.
    Matsuura K, Tosha T, Yoshioka S, Takahashi S, Ishimori K, Morishima I (2004) Biochem Biophys Res Commun 323:1209–1215PubMedCrossRefGoogle Scholar
  59. 59.
    Kumar S, Chen CS, Waxman DJ, Halpert JR (2005) J Biol Chem 280:19569–19575PubMedCrossRefGoogle Scholar
  60. 60.
    Kumar S, Liu H, Halpert JR (2006) Drug Metab Dispos 34:1958–1965PubMedCrossRefGoogle Scholar
  61. 61.
    Joyce MG, Girvan HM, Munro AW, Leys D (2004) J Biol Chem 279:23287–23293PubMedCrossRefGoogle Scholar
  62. 62.
    Girvan HM, Marshall KR, Lawson RJ, Leys D, Joyce MG, Clarkson J, Smith WE, Cheesman MR, Munro AW (2004) J Biol Chem 279:23274–23286PubMedCrossRefGoogle Scholar
  63. 63.
    Imai Y, Matsunaga I, Kusunose E, Ichihara K (2000) J Biochem 128:189–194PubMedCrossRefGoogle Scholar
  64. 64.
    Matsunaga I, Yamada M, Kusunose E, Miki T, Ichihara K (1998) J Biochem 124:105–110PubMedCrossRefGoogle Scholar
  65. 65.
    Matsunaga I, Sumimoto T, Kusunose E, Ichihara K (1998) Lipids 33:1213–1216PubMedCrossRefGoogle Scholar
  66. 66.
    Matsunaga I, Yokotani N, Gotoh O, Kusunose E, Yamada M, Ichihara K (1997) J Biol Chem 272:23592–23596PubMedCrossRefGoogle Scholar
  67. 67.
    Matsunaga I, Yamada M, Kusunose E, Nishiuchi Y, Yano I, Ichihara K (1996) FEBS Lett 386:252–254PubMedCrossRefGoogle Scholar
  68. 68.
    Matsunaga I, Shiro Y (2004) Curr Opin Chem Biol 8:127–132PubMedCrossRefGoogle Scholar
  69. 69.
    Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S, Park SY, Shiro Y (2003) J Biol Chem 278:9761–9767PubMedCrossRefGoogle Scholar
  70. 70.
    Matsunaga I, Yamada A, Lee DS, Obayashi E, Fujiwara N, Kobayashi K, Ogura H, Shiro Y (2002) Biochemistry 41:1886–1892PubMedCrossRefGoogle Scholar
  71. 71.
    Matsunaga I, Sumimoto T, Ayata M, Ogura H (2002) FEBS Lett 528:90–94PubMedCrossRefGoogle Scholar
  72. 72.
    Lee D-S, Yamada A, Matsunaga I, Ichihara K, Adachi S-i, Park S-Y, Shiro Y (2002) Acta Crystallogr Sect D 58:687–689CrossRefGoogle Scholar
  73. 73.
    Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K (1999) Lipids 34:841–846PubMedCrossRefGoogle Scholar
  74. 74.
    Girhard M, Schuster S, Dietrich M, Durre P, Urlacher VB (2007) Biochem Biophys Res Commun 362:114–119PubMedCrossRefGoogle Scholar
  75. 75.
    Girhard M, Kunigk E, Tihovsky S, Shumyantseva VV, Urlacher VB (2013) Biotechnol Appl Biochem 60:111–118PubMedCrossRefGoogle Scholar
  76. 76.
    Ipe BI, Niemeyer CM (2006) Angew Chem Int Ed 45:504–507CrossRefGoogle Scholar
  77. 77.
    Gandubert VJ, Torres E, Niemeyer CM (2008) J Mater Chem 18:3824–3830CrossRefGoogle Scholar
  78. 78.
    Rajendran V, Konig A, Rabe KS, Niemeyer CM (2010) Small 6:2035–2040PubMedCrossRefGoogle Scholar
  79. 79.
    Matsunaga I, Kusunose E, Yano I, Ichihara K (1994) Biochem Biophys Res Commun 201:1554–1560PubMedCrossRefGoogle Scholar
  80. 80.
    Fujishiro T, Shoji O, Nagano S, Sugimoto H, Shiro Y, Watanabe Y (2011) J Biol Chem 286:29941–29950PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y (2007) Angew Chem Int Ed 46:3656–3659CrossRefGoogle Scholar
  82. 82.
    Shoji O, Fujishiro T, Nagano S, Tanaka S, Hirose T, Shiro Y, Watanabe Y (2010) J Biol Inorg Chem 15:1331–1339PubMedCrossRefGoogle Scholar
  83. 83.
    Fujishiro T, Shoji O, Kawakami N, Watanabe T, Sugimoto H, Shiro Y, Watanabe Y (2012) Chem Asian J 7:2286–2293PubMedCrossRefGoogle Scholar
  84. 84.
    Fujishiro T, Shoji O, Watanabe Y (2010) Tetrahedron Lett 52:395–397CrossRefGoogle Scholar
  85. 85.
    Shoji O, Wiese C, Fujishiro T, Shirataki C, Wünsch B, Watanabe Y (2010) J Biol Inorg Chem 15:1109–1115PubMedCrossRefGoogle Scholar
  86. 86.
    Kawakami N, Shoji O, Watanabe Y (2011) Angew Chem Int Ed 50:5315–5318CrossRefGoogle Scholar
  87. 87.
    Kawakami N, Shoji O, Watanabe Y (2013) Chem Sci 4:2344–2348CrossRefGoogle Scholar
  88. 88.
    Shoji O, Kunimatsu T, Kawakami N, Watanabe Y (2013) Angew Chem Int Ed 52:6606–6610CrossRefGoogle Scholar
  89. 89.
    Poulos TL, Finzel BC, Howard AJ (1987) J Mol Biol 195:687–700PubMedCrossRefGoogle Scholar
  90. 90.
    Yano JK, Koo LS, Schuller DJ, Li HY, de Montellano PRO, Poulos TL (2000) J Biol Chem 275:31086–31092PubMedCrossRefGoogle Scholar
  91. 91.
    Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) J Biol Chem 279:38091–38094PubMedCrossRefGoogle Scholar
  92. 92.
    Yano JK, Blasco F, Li HY, Schmid RD, Henne A, Poulos TL (2003) J Biol Chem 278:608–616PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of ScienceNagoya UniversityNagoyaJapan
  2. 2.Research Center for Materials ScienceNagoya UniversityNagoyaJapan

Personalised recommendations