Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase


Spore photoproduct lyase (SPL), a member of the radical S-adenosyl-l-methionine (SAM) superfamily, catalyzes the direct reversal of the spore photoproduct, a thymine dimer specific to bacterial spores, to two thymines. SPL requires SAM and a redox-active [4Fe–4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40 %) as [2Fe–2S]2+ clusters and a smaller amount (15 %) as [4Fe–4S]2+ clusters. On reduction, the cluster content changes to primarily (60 %) [4Fe–4S]+. The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (X-ray absorption near-edge structure, XANES) and geometric (extended X-ray absorption fine structure, EXAFS) structural features of the Fe–S clusters, and their interactions with SAM. The iron K-edge EXAFS data provide evidence for elongation of a [2Fe–2S] rhomb of the [4Fe–4S] cluster on binding SAM on the basis of an Fe···Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay one another, indicating that SAM is not undergoing reductive cleavage. The X-ray absorption spectroscopy data for SPL samples and data for model complexes from the literature allowed the deconvolution of contributions from [2Fe–2S] and [4Fe–4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe–S clusters as a function of the presence of SAM. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.

Graphical abstract


This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Nucleic Acids Res 29:1097–1106

  2. 2.

    Shepard EM, Broderick JB (2010) In: Mander LN, Liu HW (eds) Comprehensive natural products II: chemistry and biochemistry. Elsevier, Oxford, pp 625–662

  3. 3.

    Frey PA, Hegeman AD, Ruzicka FJ (2008) Crit Rev Biochem Mol Biol 43:63–88

  4. 4.

    Vey JL, Yang J, Li M, Broderick WE, Broderick JB, Drennan CL (2008) Proc Natl Acad Sci USA 105:16137–16141

  5. 5.

    Layer G, Moser J, Heinz DW, Jahn D, Schubert W-D (2003) EMBO J 22:6214–6224

  6. 6.

    Hänzelmann P, Schindelin H (2004) Proc Natl Acad Sci USA 101:12870–12875

  7. 7.

    Hänzelmann P, Schindelin H (2006) Proc Natl Acad Sci USA 103:6829–6834

  8. 8.

    Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL (2004) Science 303:76–79

  9. 9.

    Walsby CJ, Hong W, Broderick WE, Cheek J, Ortillo D, Broderick JB, Hoffman BM (2002) J Am Chem Soc 124:3143–3151

  10. 10.

    Walsby CJ, Ortillo D, Broderick WE, Broderick JB, Hoffman BM (2002) J Am Chem Soc 124:11270–11271

  11. 11.

    Walsby CJ, Ortillo D, Yang J, Nnyepi M, Broderick WE, Hoffman BM, Broderick JB (2005) Inorg Chem 44:727–741

  12. 12.

    Chen D, Walsby C, Hoffman BM, Frey PA (2003) J Am Chem Soc 125:11788–11789

  13. 13.

    Lepore BW, Ruzicka FJ, Frey PA, Ringe D (2005) The x-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale. Proc Natl Acad Sci USA 102(39):13819–13824

  14. 14.

    Nicolet Y, Rubach JK, Posewitz MC, Amara P, Mathevon C, Atta M, Fontecave M, Fontecilla-Camps JC (2008) J Biol Chem 283:18861–18872

  15. 15.

    Nicolet Y, Amara P, Mouesca J-M, Fontecilla-Camps JC (2009) Proc Natl Acad Sci USA 106:14867–14871

  16. 16.

    Henshaw TF, Cheek J, Broderick JB (2000) J Am Chem Soc 122:8331–8332

  17. 17.

    Dey A, Peng Y, Broderick WE, Hedman B, Hodgson KO, Broderick JB, Solomon EI (2011) J Am Chem Soc 133:18656–18662

  18. 18.

    Rebeil R, Nicholson WL (2001) Proc Natl Acad Sci USA 98:9038–9043

  19. 19.

    Munakata N, Rupert CS (1972) J Bacteriol 111:192–198

  20. 20.

    Munakata N, Rupert CS (1974) Mol Gen Genet 130:239–250

  21. 21.

    Cheek J, Broderick JB (2002) J Am Chem Soc 124:2860–2861

  22. 22.

    Varghese AJ (1970) Biochem Biophys Res Commun 38:484–490

  23. 23.

    Donnellan JE Jr, Setlow RB (1965) Science 149:308–310

  24. 24.

    Buis JM, Cheek J, Kalliri E, Broderick JB (2006) J Biol Chem 281:25994–26003

  25. 25.

    Mehl RA, Begley TP (1999) Org Lett 1:1065–1066

  26. 26.

    Chandor-Proust A, Berteau O, Douki T, Gasparutto D, Ollagnier-de-Choudens S, Fontecave M, Atta M (2008) J Biol Chem 283:36361–36368

  27. 27.

    Yang L, Lin G, Nelson RS, Jian Y, Telser J, Li L (2012) Biochemistry 51:7173–7188

  28. 28.

    Benjdia A, Heil K, Barends TRM, Carell T, Schlichting I (2012) Structural insights into recognition and r-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme. Nucleic Acids Res 40(18):9308–9318. doi:10.1093/nar/gks603

  29. 29.

    Kneuttinger AC, Heil K, Kashiwazaki G, Carell T (2013) Chem Commun 49(7):722–744

  30. 30.

    Pieck JC, Hennecke U, Pierik AJ, Friedel MG, Carell T (2006) J Biol Chem 281:36317–36326

  31. 31.

    Yang L, Lin G, Liu D, Dria KJ, Telser J, Li L (2011) J Am Chem Soc 133:10434–10447

  32. 32.

    Chandra T, Silver SC, Zilinskas E, Shepard EM, Broderick WE, Broderick JB (2009) J Am Chem Soc 131:2420–2421

  33. 33.

    Silver SC, Chandra T, Zilinskas E, Ghose S, Broderick WE, Broderick JB (2010) J Biol Inorg Chem 15:943–955

  34. 34.

    Mantel C, Chandor A, Gasparutto D, Douki T, Atta M, Fontecave M, Bayle P-A, Mouesca J-M, Bardet M (2008) J Am Chem Soc 130:16978–16984

  35. 35.

    Heil K, Kneuttinger AC, Schneider S, Lischke U, Carell T (2011) Chem Eur J 17:9651–9657

  36. 36.

    Friedel MG, Berteau O, Pieck JC, Atta M, Ollagnier-de-Choudens S, Fontecave M, Carell T (2006) Chem Commun 445–447

  37. 37.

    Chandor A, Berteau O, Douki T, Gasparutto D, Sanakis Y, Ollagnier-de-Choudens S, Atta M, Fontecave M (2006) J Biol Chem 281:26922–26931

  38. 38.

    Chandor A, Douki T, Gasparutto D, Gambarelli S, Sanakis Y, Nicolet Y, Ollagnier-de-Choudens S, Atta M, Fontecave M (2007) C R Chim 10:756–765

  39. 39.

    Broderick JB, Henshaw TF, Cheek J, Wojtuszewski K, Smith SR, Trojan MR, McGhan RM, Kopf A, Kibbey M, Broderick WE (2000) Biochem Biophys Res Commun 269:451–456

  40. 40.

    Miller JR, Busby RW, Jordan SW, Cheek J, Henshaw TF, Ashley GW, Broderick JB, Cronan JE Jr, Marletta MA (2000) Biochemistry 39:15166–15178

  41. 41.

    Ugulava NB, Sacanell CJ, Jarrett JT (2001) Biochemistry 40:8352–8358

  42. 42.

    Bradford MM (1976) Anal Biochem 72:248–254

  43. 43.

    Beinert H (1978) Methods Enzymol 54:435–445

  44. 44.

    Beinert H (1983) Anal Biochem 131:373–378

  45. 45.

    Solomon EI, Hedman B, Hodgson KO, Dey A, Szilagyi RK (2005) Coord Chem Rev 249:97–129

  46. 46.

    Gardenghi DJ (2011) Automated Data Reduction Protocol. http://computational.chemistry.montana.edu/ADRP

  47. 47.

    Newville M, Līviņš P, Yacoby Y, Rehr JJ, Stern EA (1993) Phys Rev B 47:14126–14131

  48. 48.

    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

  49. 49.

    Newville M, Ravel B, Haskel D, Rehr JJ, Stern EA, Yacoby Y (1995) Phys B 208:154–156

  50. 50.

    Ankudinov AL, Nesvizhskii AI, Rehr JJ (2003) Phys Rev B 67:115120–115126

  51. 51.

    Rao PV, Holm RH (2004) Chem Rev 104:527–559

  52. 52.

    Szilagyi RK, Winslow MA (2006) J Comput Chem 27:1385–1397

  53. 53.

    Becke AD (1988) Phys Rev A 38:3098–3100

  54. 54.

    Perdew JP (1986) Phys Rev B 33:8822–8824

  55. 55.

    Schaefer A, Huber C, Ahlrichs R (1994) Chem Phys 100:5829–5835

  56. 56.

    Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

  57. 57.

    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

  58. 58.

    Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

  59. 59.

    Schutz CN, Warshel A (2001) Proteins Struct Funct Genet 44:400–417

  60. 60.

    Rokhsana D, Howells AE, Dooley DM, Szilagyi RK (2012) Inorg Chem 51:3513–3524

  61. 61.

    Huynh BH, Kent TA (1984) In: Eichhorn GL, Marzilli LG (eds) Advances in inorganic biochemistry. Elsevier, Amsterdam, pp 164–223

  62. 62.

    Middleton P, Dickson DPE, Johnson CE, Rush JD (1978) Eur J Biochem 88:135–141

  63. 63.

    Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119:6297–6314

  64. 64.

    Shulman RG, Yafet Y, Eisenberger P, Blumberg WE (1976) Proc Natl Acad Sci USA 73:1384–1388

  65. 65.

    Shadle SE, Hedman B, Hodgson KO, Solomon EI (1995) J Am Chem Soc 117:2259–2272

  66. 66.

    Glaser T, Hedman B, Hodgson KO, Solomon EI (2000) Acc Chem Res 33:859–868

  67. 67.

    Dey A, Glaser T, Couture MM-J, Eltis LD, Holm RH, Hedman B, Hodgson KO, Solomon EI (2004) J Am Chem Soc 126:8320–8328

  68. 68.

    Cosper MM, Jameson GNL, Davydov R, Eidsness MK, Hoffman BM, Huynh BH, Johnson MK (2002) J Am Chem Soc 124:14006–14007

  69. 69.

    Ugulava NB, Gibney BR, Jarrett JT (2000) Biochemistry 39:5206–5214

  70. 70.

    Duin EC, Lafferty ME, Crouse BR, Allen RM, Sanyal I, Flint DH, Johnson MK (1997) Biochemistry 36:11811–11820

  71. 71.

    Sum Bui T, Florentin D, Marquet A, Benda R, Trautwein AX (1999) FEBS Lett 459:411–414

  72. 72.

    Busby RW, Schelvis JPM, Yu DS, Babcock GT, Marletta MA (1999) J Am Chem Soc 121:4706–4707

  73. 73.

    Ollagnier-de Choudens S, Fontecave M (1999) FEBS Lett 453:25–28

  74. 74.

    Lieder K, Booker S, Ruzicka FJ, Beinert H, Reed GH, Frey PA (1998) Biochemistry 37:2578–2585

  75. 75.

    Petrovich RM, Ruzicka FJ, Reed GH, Frey PA (1992) Biochemistry 31:10774–10781

  76. 76.

    Broderick J, Duderstadt R, Fernandez D, Wojtuszewski K, Henshaw T, Johnson M (1997) J Am Chem Soc 119:7396–7397

  77. 77.

    Krebs C, Broderick WE, Henshaw TF, Broderick JB, Huynh BH (2002) J Am Chem Soc 124:912–913

  78. 78.

    Yang J, Naik SG, Ortillo DO, Garcia-Serres R, Li M, Broderick WE, Huynh BH, Broderick JB (2009) Biochemistry 48:9234–9241

  79. 79.

    Krebs C, Henshaw TF, Cheek J, Huynh B-H, Broderick JB (2000) J Am Chem Soc 122:12497–12506

  80. 80.

    Ollagnier S, Meier C, Mulliez E, Gaillard J, Schuenemann V, Trautwein A, Mattioli T, Lutz M, Fontecave M (1999) J Am Chem Soc 121:6344–6350

  81. 81.

    Lloyd SJ, Lauble H, Prasad GS, Stout CD (1999) Protein Sci 8:2655–2662

  82. 82.

    Robbins AH, Stout CD (1989) Proc Natl Acad Sci USA 86:3639–3643

Download references


This work has been supported by the National Institutes of Health (GM67804 and GM54608 to J.B.B.) and the National Science Foundation (MBS0744820 to R.K.S.). Portions of this research were conducted at SSRL, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences.

Author information

Correspondence to Joan B. Broderick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2955 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silver, S.C., Gardenghi, D.J., Naik, S.G. et al. Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase. J Biol Inorg Chem 19, 465–483 (2014). https://doi.org/10.1007/s00775-014-1104-y

Download citation


  • Spore photoproduct lyase
  • Radical S-adenosyl-l-methionine
  • Iron–sulfur cluster
  • Mössbauer spectroscopy
  • X-ray absorption spectroscopy