Peroxomanganese complexes as an aid to understanding redox-active manganese enzymes

Minireview

Abstract

Over the past 7 years, there have been a significant number of studies describing the structural and electronic properties, as well as the chemical reactivity, of synthetic peroxomanganese adducts. Many redox-active manganese enzymes, including manganese-containing superoxide dismutases, extradiol catechol dioxygenases, and ribonucleotide reductases, are proposed to feature peroxomanganese intermediates in their catalytic cycles. The recent efforts to model these intermediates using synthetic complexes have thus provided a strong complement to mechanistic studies of the enzymes. This review provides both a summary and a perspective of work in this area, with an emphasis on the relationship between geometric and electronic structure and chemical reactivity for η2-peroxomanganese(III) and η1-alkylperoxomanganese(III) adducts.

Keywords

Manganese Peroxo Bonding Reactivity Spectroscopy 

References

  1. 1.
    Miller A-F (2004) Curr Opin Chem Biol 8:162–168PubMedCrossRefGoogle Scholar
  2. 2.
    Wu AJ, Penner-Hahn JE, Pecoraro VL (2004) Chem Rev 104:903–938PubMedCrossRefGoogle Scholar
  3. 3.
    Grove LE, Brunold TC (2008) Comments Inorg Chem 29:134–168CrossRefGoogle Scholar
  4. 4.
    Gunderson WA, Zatsman AI, Emerson JP, Farquhar ER, Que L Jr, Lipscomb JD, Hendrich MP (2008) J Am Chem Soc 130:14465–14467PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Svedružic D, Jónsoon S, Toyota CG, Reinhardt LA, Ricagno S, Lindqvist Y, Richards NGJ (2005) Arch Biochem Biophys 433:176–192PubMedCrossRefGoogle Scholar
  6. 6.
    Cotruvo JJA, Stubbe J (2012) Metallomics 4:1020–1036PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    McEvoy JP, Brudvig GW (2006) Chem Rev 106:4455–4483PubMedCrossRefGoogle Scholar
  8. 8.
    Cox N, Pantazis DA, Neese F, Lubitz W (2013) Acc Chem Res 46:1588–1596PubMedCrossRefGoogle Scholar
  9. 9.
    Bull C, Niederhoffer EC, Yoshida T, Fee JA (1991) J Am Chem Soc 113:4069–4076CrossRefGoogle Scholar
  10. 10.
    Hearn AS, Tu CK, Nick HS, Silverman DN (1999) J Biol Chem 274:24457–24460PubMedCrossRefGoogle Scholar
  11. 11.
    Cotruvo JA, Stich TA, Britt RD, Stubbe J (2013) J Am Chem Soc 135:4027–4039Google Scholar
  12. 12.
    Messinger J, Badger M, Wydrzynski T (1995) Proc Natl Acad Sci USA 92:3209–3213PubMedCrossRefGoogle Scholar
  13. 13.
    Pecoraro VL, Baldwin MJ, Caudle MT, Hsieh W-Y, Law NA (1998) Pure Appl Chem 70:925–929CrossRefGoogle Scholar
  14. 14.
    Pecoraro VL, Baldwin MJ, Gelasco A (1994) Chem Rev 94:807–826CrossRefGoogle Scholar
  15. 15.
    Edwards RA, Baker HM, Whittaker MM, Whittaker JW, Jameson GB, Baker EN (1998) J Biol Inorg Chem 3:161–171CrossRefGoogle Scholar
  16. 16.
    Pick M, Rabani J, Yost F, Fridovich I (1974) J Am Chem Soc 96:7329–7333PubMedCrossRefGoogle Scholar
  17. 17.
    Hsu JL, Hsieh YS, Tu CK, Oconnor D, Nick HS, Silverman DN (1996) J Biol Chem 271:17687–17691PubMedCrossRefGoogle Scholar
  18. 18.
    Abreu IA, Rodriguez JA, Cabelli DE (2005) J. Phys. Chem. B 109:24502–24509PubMedCrossRefGoogle Scholar
  19. 19.
    Carrasco R, Morgenstern-Badarau I, Cano J (2007) Inorg Chim Acta 360:91–101CrossRefGoogle Scholar
  20. 20.
    Jackson TA, Karapetian A, Miller A-F, Brunold TC (2005) Biochemistry 44:1504–1520PubMedCrossRefGoogle Scholar
  21. 21.
    Porta J, Vahedi-Faridi A, Borgstahl GEO (2010) J Mol Biol 399:377–384PubMedCrossRefGoogle Scholar
  22. 22.
    Koehntop KD, Emerson JP, Que L Jr (2005) J Biol Inorg Chem 10:87–93PubMedCrossRefGoogle Scholar
  23. 23.
    VanAtta RB, Strouse CE, Hanson LK, Valentine JS (1987) J Am Chem Soc 109:1425–1434CrossRefGoogle Scholar
  24. 24.
    Kitajima N, Komatsuzaki H, Hikichi S, Osawa M, Moro-oka Y (1994) J Am Chem Soc 116:11596–11597CrossRefGoogle Scholar
  25. 25.
    Singh UP, Sharma AK, Hikichi S, Komatsuzaki H, Moro-oka Y, Akita M (2006) Inorg Chim Acta 359:4407–4411CrossRefGoogle Scholar
  26. 26.
    Seo MS, Kim JY, Annaraj J, Kim Y, Lee Y-M, Kim S-J, Kim J, Nam W (2007) Angew Chem Int Ed 46:377–380CrossRefGoogle Scholar
  27. 27.
    Annaraj J, Cho J, Lee Y-M, Kim SY, Latifi R, de Visser SP, Nam W (2009) Angew Chem Int Ed 48:4150–4153CrossRefGoogle Scholar
  28. 28.
    Kang H, Cho J, Cho K-B, Nomura T, Ogura T, Nam W (2013) Chem Eur 19:14119–14125CrossRefGoogle Scholar
  29. 29.
    Cho J, Sarangi R, Nam W (2012) Acc Chem Res 45:1321–1330PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Groni S, Blain G, Guillot R, Policar C, Anxolabéhère-Mallart E (2007) Inorg Chem 46:1951–1953PubMedCrossRefGoogle Scholar
  31. 31.
    Groni S, Dorlet P, Blain G, Bourcier S, Guillot R, Anxolabéhère-Mallart E (2008) Inorg Chem 47:3166–3172PubMedCrossRefGoogle Scholar
  32. 32.
    Geiger RA, Chattopadhyay S, Day VW, Jackson TA (2010) J Am Chem Soc 132:2821–2831PubMedCrossRefGoogle Scholar
  33. 33.
    Geiger RA, Chattopadhyay S, Day VW, Jackson TA (2011) Dalton Trans 40:1707–1715PubMedCrossRefGoogle Scholar
  34. 34.
    Geiger RA, Wijeratne G, Day VW, Jackson TA (2012) Eur J Inorg Chem 1598–1608Google Scholar
  35. 35.
    Shook RL, Gunderson WA, Greaves J, Ziller JW, Hendrich MP, Borovik AS (2008) J Am Chem Soc 130:8888–8889PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Shook RL, Peterson SM, Greaves J, Moore C, Rheingold AL, Borovik AS (2011) J Am Chem Soc 133:5810–5817PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Geiger RA, Leto DF, Chattopadhyay S, Dorlet P, Anxolabéhère-Mallart E, Jackson TA (2011) Inorg Chem 50:10190–10203PubMedCrossRefGoogle Scholar
  38. 38.
    Leto DF, Chattopadhyay S, Day VW, Jackson TA (2013) Dalton Trans 42:13014–13025PubMedCrossRefGoogle Scholar
  39. 39.
    Shook RL, Borovik AS (2010) Inorg Chem 49:3646–3660PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Cho J, Sarangi R, Kang HY, Lee JY, Kubo M, Ogura T, Solomon EI, Nam W (2010) J Am Chem Soc 132:16977–16986PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Beinert H, Kennedy MC, Stout CD (1996) Chem Rev 96:2335–2373PubMedCrossRefGoogle Scholar
  42. 42.
    El Ghachtouli S, Vincent Ching HY, Lassalle-Kaiser B, Guillot R, Leto DF, Chattopadhyay S, Jackson TA, Dorlet P, Anxolabéhère-Mallart E (2013) Chem Commun 49:5696–5698CrossRefGoogle Scholar
  43. 43.
    Urban MW, Nakamoto K, Basolo F (1982) Inorg Chem 21:3406–3408CrossRefGoogle Scholar
  44. 44.
    Hoffman BM, Weschler CJ, Basolo F (1976) J Am Chem Soc 98:5473–5482PubMedCrossRefGoogle Scholar
  45. 45.
    Bossek U, Weyhermuller T, Wieghardt K, Nuber B, Weiss J (1990) J Am Chem Soc 112:6387–6388CrossRefGoogle Scholar
  46. 46.
    Lee C-M, Chuo C-H, Chen C-H, Hu C-C, Chiang M-H, Tseng Y-J, Hu C-H, Lee G-H (2012) Angew Chem Int Ed 51:5427–5430CrossRefGoogle Scholar
  47. 47.
    Coggins MK, Kovacs JA (2011) J Am Chem Soc 133:12470–12473PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Coggins MK, Martin-Diaconescu V, DeBeer S, Kovacs JA (2013) J Am Chem Soc 135:4260–4272PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Komatsuzaki H, Sakamoto N, Satoh M, Hikichi S, Akita M, Moro-oka Y (1998) Inorg Chem 37:6554–6555PubMedCrossRefGoogle Scholar
  50. 50.
    Bhula R, Gainsford GJ, Weatherburn DC (1988) J Am Chem Soc 110:7550–7552CrossRefGoogle Scholar
  51. 51.
    Coggins MK, Sun X, Kwak Y, Solomon EI, Rybak-Akimova EV, Kovacs JA (2013) J Am Chem Soc 135:5631–5640PubMedCrossRefGoogle Scholar
  52. 52.
    Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986PubMedCrossRefGoogle Scholar
  53. 53.
    Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1046PubMedCrossRefGoogle Scholar
  54. 54.
    Park GY, Qayyum MF, Woertink J, Hodgson KO, Hedman B, Narducci Sarjeant AA, Solomon EI, Karlin KD (2012) J Am Chem Soc 134:8513–8524PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Wolk AB, Leavitt CM, Fournier JA, Kamrath MZ, Wijeratne GB, Jackson TA, Johnson MA (2013) Int J Mass Spectr (On-line ASAP). doi:10.1016/j.ijms.2013.04.022
  56. 56.
    Roelfes G, Vrajmasu V, Chen K, Ho RYN, Rohde J-U, Zondervan C, la Crois RM, Schudde EP, Lutz M, Spek AL, Hage R, Feringa BL, Münck E, Que L Jr (2003) Inorg Chem 42:2639–2653PubMedCrossRefGoogle Scholar
  57. 57.
    Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, AmsterdamGoogle Scholar
  58. 58.
    Lehnert N, Ho RYN, Que L Jr, Solomon EI (2001) J Am Chem Soc 123:12802–12816PubMedCrossRefGoogle Scholar
  59. 59.
    Lehnert N, Ho RYN, Que L Jr, Solomon EI (2001) J Am Chem Soc 123:8271–8290PubMedCrossRefGoogle Scholar
  60. 60.
    Groves JT, Watanabe Y, McMurry TJ (1983) J Am Chem Soc 105:4489–4490CrossRefGoogle Scholar
  61. 61.
    Creager SE, Murray RW (1987) Inorg Chem 26:2612–2618CrossRefGoogle Scholar
  62. 62.
    Creager SE, Raybuck SA, Murray RW (1986) J Am Chem Soc 108:4225–4227CrossRefGoogle Scholar
  63. 63.
    Jin N, DeE Lahaye, Groves JT (2010) Inorg Chem 49:11516–11524PubMedCrossRefGoogle Scholar
  64. 64.
    Aboelella NW, York JT, Reynolds AM, Fujita K, Kinsinger CR, Cramer CJ, Riordan CG, Tolman WB (2004) Chem Commun 1716–1717Google Scholar
  65. 65.
    Kieber-Emmons MT, Riordan CG (2007) Acc Chem Res 40:618–625PubMedCrossRefGoogle Scholar
  66. 66.
    Cramer CJ, Tolman WB (2007) Acc Chem Res 40:601–608PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Jo Y, Annaraj J, Seo MS, Lee Y-M, Kim SY, Cho J, Nam W (2008) J Inorg Biochem 102:2155–2159PubMedCrossRefGoogle Scholar
  68. 68.
    Sisemore MF, Selke M, Burstyn JN, Valentine JS (1997) Inorg Chem 36:979–984PubMedCrossRefGoogle Scholar
  69. 69.
    Neese F, Solomon EI (1998) J Am Chem Soc 120:12829–12848CrossRefGoogle Scholar
  70. 70.
    Li F, Van Heuvelen KM, Meier KK, Münck E, Que L Jr (2013) J Am Chem Soc 135:10198–10201PubMedCrossRefGoogle Scholar
  71. 71.
    Lee Y-M, Bang S, Kim YM, Cho J, Hong S, Nomura T, Ogura T, Troeppner O, Ivanovic-Burmazovic I, Sarangi R, Fukuzumi S, Nam W (2013) Chem Sci 4:3917–3923CrossRefGoogle Scholar
  72. 72.
    Stasser J, Namuswe F, Kasper GD, Jiang Y, Krest CM, Green MT, Penner-Hahn J, Goldberg DP (2010) Inorg Chem 49:9178–9190PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Kanady JS, Tsui EY, Day MW, Agapie T (2011) Science 333:733–736PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2013

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Environmentally Beneficial CatalysisUniversity of KansasLawrenceUSA

Personalised recommendations