Skip to main content
Log in

Multimodality PET/MRI agents targeted to activated macrophages

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The recent emergence of multimodality imaging, particularly the combination of PET and MRI, has led to excitement over the prospect of improving detection of disease. Iron oxide nanoparticles have become a popular platform for the fabrication of PET/MRI probes owing to their advantages of high MRI detection sensitivity, biocompatibility, and biodegradability. In this article, we report the synthesis of dextran-coated iron oxide nanoparticles (DIO) labeled with the positron emitter 64Cu to generate a PET/MRI probe, and modified with maleic anhydride to increase the negative surface charge. The modified nanoparticulate PET/MRI probe (MDIO-64Cu-DOTA) bears repetitive anionic charges on the surface that facilitate recognition by scavenger receptor type A (SR-A), a ligand receptor found on activated macrophages but not on normal vessel walls. MDIO-64Cu-DOTA has an average iron oxide core size of 7–8 nm, an average hydrodynamic diameter of 62.7 nm, an r 1 relaxivity of 16.8 mM−1 s−1, and an r 2 relaxivity of 83.9 mM−1 s−1 (37 °C, 1.4 T). Cell studies confirmed that the probe was nontoxic and was specifically taken up by macrophages via SR-A. In comparison with the nonmodified analog, the accumulation of MDIO in macrophages was substantially improved. These characteristics demonstrate the promise of MDIO-64Cu-DOTA for identification of vulnerable atherosclerotic plaques via the targeting of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fuster V, Lois F, Franco M (2010) Nat Rev Cardiol 7:327–333

    Article  PubMed  Google Scholar 

  2. Chen W, Cormode DP, Fayad ZA, Mulder WJM (2011) Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:146–161

    Article  Google Scholar 

  3. Beyer T, Pichler B (2009) Eur J Nucl Med Mol Imaging 36:1–2

    Article  Google Scholar 

  4. Cherry SR, Louie AY, Jacobs RE (2008) Proc IEEE 96:416–438

    Article  CAS  Google Scholar 

  5. Marti-Bonmati L, Sopena R, Bartumeus P, Sopena P (2010) Contrast Media Mol Imaging 5:180–189

    Article  CAS  PubMed  Google Scholar 

  6. Zaidi H, Del Guerra A (2011) Med Phys 38:5667–5689

    Article  PubMed  Google Scholar 

  7. Sauter AW, Wehrl HF, Kolb A, Judenhofer MS, Pichler BJ (2010) Trends Mol Med 16:508–515

    Article  PubMed  Google Scholar 

  8. Ng TSC, Procissi D, Wu Y, Jacobs RE (2010) Med Phys 37:1995–2003

    Article  CAS  PubMed  Google Scholar 

  9. Louie A (2010) Chem Rev 110:3146–3195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tu CQ, Ma XC, House A, Kauzlarich SM, Louie AY (2011) ACS Med Chem Lett 2:285–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tassa C, Shaw SY, Weissleder R (2011) Acc Chem Res 44:842–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Xie J, Chen K, Huang J, Lee S, Wang JH, Gao J, Li XG, Chen XY (2010) Biomaterials 31:3016–3022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. de Rosales RTM, Tavare R, Glaria A, Varma G, Protti A, Blower PJ (2011) Bioconjug Chem 22:455–465

    Article  Google Scholar 

  14. Yang XQ, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao YL, Yang YA, Zhang Y, Nickles R, Cai WB, Steeber DA, Gong SQ (2011) Biomaterials 32:4151–4160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Liu Y, Welch MJ (2012) Bioconjug Chem 23:671–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tang TY, Muller KH, Graves MJ, Li ZY, Walsh SR, Young V, Sadat U, Howarth SPS, Gillard JH (2009) Arterioscler Thromb Vasc Biol 29:1001–1008

    Article  CAS  PubMed  Google Scholar 

  17. Woollard KJ, Geissmann F (2010) Nat Rev Cardiol 7:77–86

    Article  PubMed Central  PubMed  Google Scholar 

  18. Libby P, DiCarli M, Weissleder R (2010) J Nucl Med 51:33S–37S

    Article  PubMed  Google Scholar 

  19. Moore KJ, Tabas I (2011) Cell 145:341–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Nahrendorf M, Zhang HW, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Circulation 117:379–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sadat U, Li ZY, Graves MJ, Tang TY, Gillard JH (2009) Nat Clin Pract Cardiovasc Med 6:200–209

    Article  PubMed  Google Scholar 

  22. Goldstein JL, Ho YK, Basu SK, Brown MS (1979) Proc Natl Acad Sci USA 76:333–337

    Article  CAS  PubMed  Google Scholar 

  23. Brown MS, Goldstein JL, Krieger M, Ho YK, Anderson RGW (1979) J Cell Biol 82:597–613

    Article  CAS  PubMed  Google Scholar 

  24. Tu CQ, Ma XC, Pantazis P, Kauzlarich SM, Louie AY (2010) J Am Chem Soc 132:2016–2023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Neyen C, Pluddemann A, Roversi P, Thomas B, Cai L, van der Westhuyzen DR, Sim RB, Gordon S (2009) Biochemistry 48:11858–11871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Doi T, Higashino K, Kurihara Y, Wada Y, Miyazaki T, Nakamura H, Uesugi S, Imanishi T, Kawabe Y, Itakura H, Yazaki Y, Matsumoto A, Kodama T (1993) J Biol Chem 268:2126–2133

    CAS  PubMed  Google Scholar 

  27. Greaves DR, Gordon S (2009) J Lipid Res 50:S282–S286

    Article  PubMed  Google Scholar 

  28. Liu Q, Hamblin MR (2005) Int J Immunopathol Pharmacol 18:391–402

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Jarrett BR, Gustafsson B, Kukis DL, Louie AY (2008) Bioconjug Chem 19:1496–1504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Tu C, Ng TSC, Sohi HK, Palko HA, House A, Jacobs RE, Louie AY (2011) Biomaterials 32:7209–7216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jarrett BR, Correa C, Ma KL, Louie AY (2010) PLoS One 5:e13254

  32. Jarrett BR, Frendo M, Vogan J, Louie AY (2007) Nanotechnology 18:035603

    Google Scholar 

  33. Wunderbaldinger P, Josephson L, Weissleder R (2002) Acad Radiol 9:S304–S306

    Article  PubMed  Google Scholar 

  34. Gustafsson B, Youens S, Louie AY (2006) Bioconjug Chem 17:538–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Feeney RE, Yamasaki RB, Geoghegan KF (1982) Adv Chem Ser 198:3–55

    Article  CAS  Google Scholar 

  36. Anderegg G, Arnaud-Neu F, Delgado R, Felcman J, Popov K (2005) Pure Appl Chem 77:1445–1495

    Article  CAS  Google Scholar 

  37. Jones-Wilson TM, Deal KA, Anderson CJ, McCarthy DW, Kovacs Z, Motekaitis RJ, Sherry AD, Martell AE, Welch MJ (1998) Nucl Med Biol 25:523–530

    Article  CAS  PubMed  Google Scholar 

  38. Hargreaves MK, Stevinson EA (1964) Spectrochim Acta 20:317–324

    Article  CAS  Google Scholar 

  39. Predoi D (2007) Dig J Nanomater Biostruct 2:169–173

    Google Scholar 

  40. Tu CQ, Louie AY (2012) WIREs Nanomed Nanobiotechnol 4:448–457

    Article  CAS  Google Scholar 

  41. Obeidat WM, Schwabe K, Muller RH, Keck CM (2010) Eur J Pharm Biopharm 76:56–67

    Article  CAS  PubMed  Google Scholar 

  42. Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:299–310

    Article  CAS  PubMed  Google Scholar 

  43. Alford R, Simpson HM, Duberman J, Hill GC, Ogawa M, Regino C, Kobayashi H, Choyke PL (2009) Mol Imaging 8:341–354

    CAS  PubMed  Google Scholar 

  44. Longmire MR, Ogawa M, Hama Y, Kosaka N, Regino CAS, Choyke PL, Kobayashi H (2008) Bioconjug Chem 19:1735–1742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Christie RJ, Tadiello CJ, Chamberlain LM, Grainger DW (2009) Bioconjug Chem 20:476–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. O’Brien J, Wilson I, Orton T, Pognan F (2000) Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  47. de Rosales RTM, Tavare R, Paul RL, Jauregui-Osoro M, Protti A, Glaria A, Varma G, Szanda I, Blower PJ (2011) Angew Chem Int Ed 50:5509–5513

    Article  Google Scholar 

  48. Barreto JA, Matterna M, Graham B, Stephan H, Spiccia L (2011) New J Chem 35:2705–2712

    Article  CAS  Google Scholar 

  49. Glaus C, Rossin R, Welch MJ, Bao G (2010) Bioconjug Chem 21:715–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Greaves DR, Gordon S (2005) J Lipid Res 46:11–20

    Article  CAS  PubMed  Google Scholar 

  51. Platt N, Gordon S (2001) J Clin Invest 108:649–654

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Osborn EA, Jaffer FA (2008) Curr Opin Cardiol 23:620–628

    Article  PubMed  Google Scholar 

  53. Shaw SY (2009) Nat Rev Cardiol 6:569–579

    Article  CAS  PubMed  Google Scholar 

  54. Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JGS, Weinreb DB, Vucic E, Frias JC, Hyafil F, Mani V, Fisher EA, Fayad ZA (2007) Proc Natl Acad Sci USA 104:961–966

    Article  CAS  PubMed  Google Scholar 

  55. Hamzah J, Kotamraju VR, Seo JW, Agemy L, Fogal V, Mahakian LM, Peters D, Roth L, Gagnon MKJ, Ferrara KW, Ruoslahti E (2011) Proc Natl Acad Sci USA 108:7154–7159

    Article  CAS  PubMed  Google Scholar 

  56. Uchida M, Kosuge H, Terashima M, Willits DA, Liepold LO, Young MJ, McConnell MV, Douglas T (2011) ACS Nano 5:2493–2502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Choudhury RP, Fisher EA (2009) Arterioscler Thromb Vasc Biol 29:983–991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wang AZ, Gu F, Zhang LF, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC (2008) Expert Opin Biol Ther 8:1063–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Talekar M, Kendall J, Denny W, Garg S (2011) Anticancer Drugs 22:949–962

    Article  CAS  PubMed  Google Scholar 

  60. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R (2010) Arterioscler Thromb Vasc Biol 30:1282–1292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the National Institutes of Health (EB008576-01 and EB000993), the Center for Molecular and Genomic Imaging at the University of California, Davis (U24 CA 110804), and the NMR award of the University of California, Davis for support of this work. We thank Jeongchan Park, Jai Woong Seo, and Ray Wong for help with TEM imaging, zeta potential measurements, and IR spectroscopy, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelique Y. Louie.

Additional information

Responsible Editor: Valerie C. Pierre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, C., Ng, T.S.C., Jacobs, R.E. et al. Multimodality PET/MRI agents targeted to activated macrophages. J Biol Inorg Chem 19, 247–258 (2014). https://doi.org/10.1007/s00775-013-1054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1054-9

Keywords

Navigation