Di- and polynuclear silver(I) saccharinate complexes of tertiary diphosphane ligands: synthesis, structures, in vitro DNA binding, and antibacterial and anticancer properties

  • Veysel T. Yilmaz
  • Elif Gocmen
  • Ceyda Icsel
  • Murat Cengiz
  • Sunde Y. Susluer
  • Orhan Buyukgungor
Original Paper

Abstract

A series of new silver(I) saccharinate (sac) complexes, [Ag2(sac)2(μ-dppm)H2O]·H2O (1), {[Ag2(μ-sac)2(μ-dppe)]·3H2O·CH2Cl2}n (2), [Ag2(μ-sac)2(μ-dppp)]n (3), and [Ag(sac)(μ-dppb)]n (4) [dppm is 1,1-bis(diphenylphosphino)methane, dppe is 1,2-bis(diphenylphosphino)ethane, dppp is 1,3-bis(diphenylphosphino)propane, and dppb is 1,4-bis(diphenylphosphino)butane], have been synthesized and characterized by C, H, N elemental analysis, IR spectroscopy, 1H NMR, 13C NMR, and 31P NMR spectroscopy, electrospray ionization mass spectrometry, and thermogravimetry–differential thermal analysis. Single-crystal X-ray studies show that the diphosphanes act as bridging ligands to yield a dinuclear complex (1) and one-dimensional coordination polymers (2 and 4), whereas the sac ligand adopts a μ2-N/O bridging mode in 2, and is N-coordinated in 1 and 4. The interaction of the silver(I) complexes with fish sperm DNA was investigated using UV–vis spectroscopy, fluorescence spectroscopy, and agarose gel electrophoresis. The binding studies indicate that the silver(I) complexes can interact with fish sperm DNA through intercalation, and complexes 1 and 3 have the highest binding affinity. The gel electrophoresis assay further confirms the binding of the complexes with the pBR322 plasmid DNA. The minimum inhibitory concentrations of the complexes indicate that complex 1 exhibits very high antibacterial activity against standard bacterial strains of Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus, being much higher than those of AgNO3, silver sulfadiazine, ciprofloxacin, and gentamicin. Moreover, complexes 13 exhibit very high cytotoxic activity against A549 and MCF-7 cancer cell lines, compared with AgNO3 and cisplatin. The bacterial and cell growth inhibitions of the silver(I) complexes are closely related to their DNA binding affinities.

Keywords

Silver(I) complexes Saccharinate Tertiary diphosphanes DNA binding Antibacterial activity 

Notes

Acknowledgments

Financial support received from Uludag University [project UAP(F)-2011/36] is gratefully acknowledged.

References

  1. 1.
    Clement JL, Jarrett PS (1994) Met Based Drugs 1:467–482PubMedCentralPubMedGoogle Scholar
  2. 2.
    Wright JB, Lam K, Hansen D, Burrell RE (1999) Am J Infect Control 27:344–350PubMedGoogle Scholar
  3. 3.
    Silver S (2003) FEMS Microbiol Rev 27:341–353PubMedGoogle Scholar
  4. 4.
    Klasen HJ (2000) Burns 26:117–130PubMedGoogle Scholar
  5. 5.
    Fox CL (1968) Arch Surg 96:184–188PubMedGoogle Scholar
  6. 6.
    Fox CL, Modak SM (1974) Antimicrob Agents Chemother 5:582–588PubMedCentralPubMedGoogle Scholar
  7. 7.
    Fox CL (1983) Surg Gynecol Obstet 157:82–88PubMedGoogle Scholar
  8. 8.
    Fox CL (1985) Burns Incl Therm Inj 11:306–307PubMedGoogle Scholar
  9. 9.
    Deshpande LM, Chopade BA (1994) Biometals 7:49–56PubMedGoogle Scholar
  10. 10.
    de Gracia GG (2001) Burns 27:67–74PubMedGoogle Scholar
  11. 11.
    White RJ, Cooper R (2005) Wounds UK 1:51–61Google Scholar
  12. 12.
    Cook DS, Turner MF (1975) J Chem Soc Perkin Trans 2 1021–1025Google Scholar
  13. 13.
    Baenziger NC, Struss AW (1976) Inorg Chem 15:1807–1809Google Scholar
  14. 14.
    Thurman R, Gerba CP (1988) Crit Rev Environ Control 18:295–315Google Scholar
  15. 15.
    McDonnell G, Russell AD (1999) Clin Microbiol Rev 12:147–179PubMedCentralPubMedGoogle Scholar
  16. 16.
    Percival SL, Bowler PG, Russell D (2005) J Hosp Infect 60:1–7PubMedGoogle Scholar
  17. 17.
    Kasuga NC, Yoshikawa R, Sakai Y, Nomiya K (2012) Inorg Chem 51:1640–1647PubMedGoogle Scholar
  18. 18.
    Liau SY, Read DC, Pugh WJ, Furr JR, Russel AD (1997) Lett Appl Microbiol 25:279–283PubMedGoogle Scholar
  19. 19.
    Nomiya K, Noguchi R, Oda M (2000) Inorg Chim Acta 298:24–32Google Scholar
  20. 20.
    Nomiya K, Noguchi R, Shigeta T, Kondoh Y, Tsuda K, Ohsawa K, Kasuga NC, Oda M (2000) Bull Chem Soc Jpn 3:1143–1152Google Scholar
  21. 21.
    Nomiya K, Yokohama H (2002) J Chem Soc Dalton Trans 2483–2490Google Scholar
  22. 22.
    Baran EJ, Yilmaz VT (2006) Coord Chem Rev 250:1980–1999Google Scholar
  23. 23.
    Cavicchioli M, Massabni AC, Castellano EE, Sabeh LPB, Costa-Neto CM (2007) Inorg Chim Acta 360:3055–3060Google Scholar
  24. 24.
    Maiore L, Cinellu MA, Michelucci E, Moneti G, Nobili S, Landini I, Mini E, Guerri A, Gabbiani C, Messori L (2011) J Inorg Biochem 105:348–355PubMedGoogle Scholar
  25. 25.
    Guney E, Yilmaz VT, Ari F, Buyukgungor O, Ulukaya E (2011) Polyhedron 30:114–122Google Scholar
  26. 26.
    Ulukaya E, Ari F, Dimas K, Sarimahmut M, Guney E, Sakellaridis N, Yilmaz VT (2011) J Cancer Res Clin Oncol 137:1425–1434PubMedGoogle Scholar
  27. 27.
    Ulukaya E, Ari F, Dimas K, Ikitimur EI, Guney E, Yilmaz VT (2011) Eur J Med Chem 46:4957–4963PubMedGoogle Scholar
  28. 28.
    Coskun MD, Ari F, Oral AY, Sarimahmut M, Kutlu HM, Yilmaz VT, Ulukaya E (2013) Bioorg Med Chem 21:4698–4705PubMedGoogle Scholar
  29. 29.
    Ari F, Aztopal N, Icsel C, Yilmaz VT, Guney E, Buyukgungor O, Ulukaya E (2013) Bioorg Med Chem 21:6427–6434Google Scholar
  30. 30.
    Icsel C, Yilmaz VT (2013) DNA Cell Biol 32:165–172PubMedGoogle Scholar
  31. 31.
    Banti CN, Giannoulis AD, Kourkoumelis N, Owczarzak AM, Poyraz M, Kubicki M, Charalabopoulos K, Hadjikakou SK (2012) Metallomics 4:545–560PubMedGoogle Scholar
  32. 32.
    Banti CN, Hadjikakou SK (2013) Metallomics 5:569–596PubMedGoogle Scholar
  33. 33.
    Ng SW (1995) Z Kristallogr 210:206–209Google Scholar
  34. 34.
    Cavicchioli M, Leite CQF, Sato DN, Massabni AC (2007) Arch Pharm Chem Life Sci 340:538–542Google Scholar
  35. 35.
    Yesilel OZ, Kastas G, Darcan C, Ilker I, Pasaoglu H (2010) Inorg Chim Acta 363:1849–1858Google Scholar
  36. 36.
    Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122Google Scholar
  37. 37.
    Spek AL (2003) J Appl Crystallogr 36:7–13Google Scholar
  38. 38.
    Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051–3058Google Scholar
  39. 39.
    Stern O, Volmer M (1919) Z Phys 20:183–188Google Scholar
  40. 40.
    Lee M, Rhodes AL, Wyatt MD, Forrow S, Hartley JA (1993) Biochemistry 32:4237–4245PubMedGoogle Scholar
  41. 41.
    Bi S, Qiao C, Song D, Tian Y, Gao D, Sun Y, Zhang H (2006) Sens Actuators B 119:199–208Google Scholar
  42. 42.
    Clinical Laboratory Standards Institute (2003) Approved standard M7-A6. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 6th edn. Clinical Laboratory Standards Institute, WayneGoogle Scholar
  43. 43.
    Geary WJ (1971) Coord Chem Rev 7:81–122Google Scholar
  44. 44.
    Effendy, Hanna JV, Marchetti F, Martini D, Pettinari C, Pettinari R, Skelton BW, White AH (2004) Inorg Chim Acta 357:1523–1537Google Scholar
  45. 45.
    Di Nicola C, Effendy, Fazaroh F, Pettinari C, Skelton BW, Somers N, White AH (2005) Inorg Chim Acta 358:720–734Google Scholar
  46. 46.
    Effendy, Di Nicola C, Nitiatmodjo M, Pettinari C, Skelton BW, White AH (2005) Inorg Chim Acta 358:735–747Google Scholar
  47. 47.
    Effendy, Di Nicola C, Pettinari C, Pizzabiocca A, Skelton BW, Somers N, White AH (2006) Inorg Chim Acta 359:64–80Google Scholar
  48. 48.
    Pettinari C, Ngoune J, Marinelli A, Skelton BW, White AH (2009) Inorg Chim Acta 362:3225–3230Google Scholar
  49. 49.
    Zhang L, Lu X-Q, Zhang Q, Chen C-L, Kang B-S (2005) Transit Metal Chem 30:76–81Google Scholar
  50. 50.
    Daasch LW, Smith DC (1951) Anal Chem 23:853–868Google Scholar
  51. 51.
    Corbridge DEC (1956) J Appl Chem 6:546–465Google Scholar
  52. 52.
    Westermark G, Person I (1998) Colloids Surf A 144:149–166Google Scholar
  53. 53.
    Meijboom R, Bowen RJ, Berners-Price SJ (2009) Coord Chem Rev 253:325–342Google Scholar
  54. 54.
    James SL (2009) Chem Soc Rev 38:1744–1758PubMedGoogle Scholar
  55. 55.
    Hamamci S, Yilmaz VT, Harrison WTA (2005) Z Naturforsch 60b:978–983Google Scholar
  56. 56.
    Hamamci S, Yilmaz VT, Harrison WTA, Thöne C (2005) Solid State Sci 7:423–429Google Scholar
  57. 57.
    Yilmaz VT, Hamamci S, Kazak C (2005) Z Anorg Allg Chem 631:1961–1965Google Scholar
  58. 58.
    Hamamci S, Yilmaz VT, Harrison WTA (2005) Struct Chem 16:379–383Google Scholar
  59. 59.
    Yilmaz VT, Hamamci S, Buyukgungor O (2006) Z Naturforsch 61b:189–193Google Scholar
  60. 60.
    Yilmaz VT, Hamamci S, Gumus S, Buyukgungor O (2006) J Mol Struct 794:142–147Google Scholar
  61. 61.
    Gumus S, Hamamci S, Yilmaz VT, Kazak C (2007) J Mol Struct 828:181–187Google Scholar
  62. 62.
    Yilmaz VT, Senel E, Guney E, Kazak C (2008) Inorg Chem Commun 11:1330–1333Google Scholar
  63. 63.
    Hamamci S, Yilmaz VT, Gumus S, Buyukgungor O (2008) Struct Chem 19:123–129Google Scholar
  64. 64.
    Guney E, Yilmaz VT, Buyukgungor O (2010) Polyhedron 29:1437–1442Google Scholar
  65. 65.
    Ilker I, Yesilel OZ, Gunay G, Buyukgungor O (2009) J Organomet Chem 694:4178–4184Google Scholar
  66. 66.
    Yesilel OZ, Gunay G, Buyukgungor O (2011) Polyhedron 30:364–371Google Scholar
  67. 67.
    Szlyk E, Szymanska I, Surdykowski A, Glowiak T, Wojtezak A, Golinski A (2003) Dalton Trans 3404–3410Google Scholar
  68. 68.
    Lobbia GG, Pellei M, Pettinari C, Santini C, Skelton BW, White AH (2005) Polyhedron 24:181–187Google Scholar
  69. 69.
    Di Nicola C, Effendy, Pettinari C, Skelton BW, Somers N, White AH (2006) Inorg Chim Acta 359: 53–63Google Scholar
  70. 70.
    Effendy, Marchetti F, Pettinari C, Pettinari R, Skelton BW, White AH (2007) Inorg Chim Acta 360:1388–1413Google Scholar
  71. 71.
    Effendy, Marchetti F, Pettinari C, Pettinari R, Skelton BW, White AH (2007) Inorg Chim Acta 360:1414–1423Google Scholar
  72. 72.
    Teo P, Koh LL, Hor TSA (2008) Inorg Chem 47:9561–9568PubMedGoogle Scholar
  73. 73.
    Liu Y-L, Han L-J, Qiao G-R, Yang M, Zhang Q, Wang J-G, Zhan S-Z (2012) Synth React Inorg Met Org Nano Met Chem 42:183–189Google Scholar
  74. 74.
    Ruan B, Tian Y, Zhou H, Wu J, Liu Z, Zhu C, Yang J, Zhu H (2009) J Organomet Chem 694:2883–2887Google Scholar
  75. 75.
    Wang C-F, Peng S-M (1996) Polyhedron 15:1853–1858Google Scholar
  76. 76.
    Jones PG, Ahrens B (1998) Chem Commun 2307–2308Google Scholar
  77. 77.
    Su W, Hong M, Cao R, Chen J, Wu D, Liu H, Lu J (1998) Inorg Chim Acta 267:313–317Google Scholar
  78. 78.
    Lobana TS, Paul S, Castineiras A (1999) J Chem Soc Dalton Trans 1819–1824Google Scholar
  79. 79.
    Liu CW, Liaw B-J (2000) Inorg Chem 39:1329–1332PubMedGoogle Scholar
  80. 80.
    Youm K-T, Kim Y, Do Y, Jun M-J (2000) Inorg Chim Acta 310:203–209Google Scholar
  81. 81.
    Zhou W-B, Dong Z-C, Song J-L, Zeng H-Y, Cao R, Guo G-C, Huang J-S, Li J (2002) J Clust Sci 13:119–136Google Scholar
  82. 82.
    Park YJ, Do Y, Kim KM, Choi M-G, Jun M-J, Kim C (2002) Polyhedron 21:33–37Google Scholar
  83. 83.
    Zhang L, Zhang H-X, Chen C-L, Deng L-R, Kang B-S (2003) Inorg Chim Acta 355:49–56Google Scholar
  84. 84.
    Fournier E, Lebrun F, Drouin M, Decken A, Harvey PD (2004) Inorg Chem 43:3127–3135PubMedGoogle Scholar
  85. 85.
    Liu B, Zhou G-W, Fu M-L, Xu L, Guo G-C, Huang J-S (2004) Bull Korean Chem Soc 25:1937–1940Google Scholar
  86. 86.
    Di Nicola C, Ngoune J, Effendy, Pettinari C, Skelton BW, White AH (2007) Inorg Chim Acta 360:2935–2943Google Scholar
  87. 87.
    Ma Z, Sun J, Liu B, Hua M, Xing Y (2008) Acta Crystallogr Sect E 64:m269Google Scholar
  88. 88.
    Lo KM, Ng SW (2008) Acta Crystallogr Sect E 64:m717Google Scholar
  89. 89.
    Maa Z, Xing Y, Yang M, Hua M, Liu B, Guedes da Silva MFC, Pombeiro AJL (2009) Inorg Chim Acta 362:2921–2926Google Scholar
  90. 90.
    Lv Q-Y, Song Y-Q, Zhan S-Z, Cai J, He J-P (2009) J Coord Chem 62:1536–1543Google Scholar
  91. 91.
    Liu CW, Sarkar B, Liaw B-J, Lin Y-W, Lobana TS, Wang J-C (2009) J Organomet Chem 694:2134–2141Google Scholar
  92. 92.
    Song L-L, Cui L-N, Jina Q-H, Zhangb C-L (2010) Acta Crystallogr Sect E 66:m1237–m1238Google Scholar
  93. 93.
    Jin Q-H, Song L-L, Hu K-Y, Zhou L-L, Zhang Y-Y, Wang R (2010) Inorg Chem Commun 13:62–65Google Scholar
  94. 94.
    Song L-L, Jin Q-H, Cui L-N, Zhang C-L (2010) Inorg Chim Acta 363:2425–2429Google Scholar
  95. 95.
    Chao H-Y, Wu L, Li C-L, Lu W, Liu L, Feng X-L (2011) Z Anorg Allg Chem 637:1533–1538Google Scholar
  96. 96.
    Yang X, Huang X, Qiu Q-M, Jina Q-H, Zhang C-L (2012) Acta Crystallogr Sect E 68:m1367Google Scholar
  97. 97.
    Yilmaz VT, Hamamci S, Thöne C (2004) Z Anorg Allg Chem 630:1641–1644Google Scholar
  98. 98.
    Yilmaz VT, Hamamci S, Harrison WTA, Thöne C (2005) Polyhedron 24:693–699Google Scholar
  99. 99.
    Yilmaz VT, Hamamci S, Buyukgungor O (2008) Polyhedron 27:1761–1766Google Scholar
  100. 100.
    Prajapati R, Kimura K, Mishra L (2009) Inorg Chim Acta 362:3219–3224Google Scholar
  101. 101.
    Fournier E, Sicard S, Decken A, Harvey PD (2004) Inorg Chem 43:1491–1501PubMedGoogle Scholar
  102. 102.
    Aslanidis P, Cox PJ, Divanidis S, Karagiannidis P (2004) Inorg Chim Acta 357:2677–2686Google Scholar
  103. 103.
    Bao F, Lu X-Q, Ng SW (2005) Acta Crystallogr Sect E 61:m2637–m2638Google Scholar
  104. 104.
    Zhang L, Lu X-Q, Chen C-L, Tan H-Y, Zhang H-X, Kang B-S (2005) Cryst Growth Des 5:283–287Google Scholar
  105. 105.
    Cingolani A, Effendy, Pettinari C, Skelton BW, White AH (2006) Inorg Chim Acta 359:2170–2177Google Scholar
  106. 106.
    De Menezes Vicenti JR, Burrow RA (2007) Acta Crystallogr Sect C 63:m88–m90Google Scholar
  107. 107.
    Wang X-C, Wu Y-L, You X-L (2008) Acta Crystallogr Sect E 64:m981Google Scholar
  108. 108.
    Teo YY, Lo KM, Ng SW (2008) Acta Crystallogr Sect E 64:m819Google Scholar
  109. 109.
    Dennehy M, Quinzani OV, Mandolesi SD, Burrow RA (2011) J Mol Struct 998:119–125Google Scholar
  110. 110.
    Ruina Y, Yimin H, Baoyu X, Dungmei W, Douman J (1996) J Trans Met Chem 21:28–30Google Scholar
  111. 111.
    Cui L-N, Li Z-F, Jin Q-H, Xin X-L, Zhang C-L (2012) Inorg Chem Commun 20:126–130Google Scholar
  112. 112.
    Zhang L, Chen C, Zhang Q, Zhang H, Kang B (2003) Acta Crystallogr Sect E 59:m536–m537Google Scholar
  113. 113.
    Lepecq J-B, Paoletti C (1967) J Mol Biol 27:87–106PubMedGoogle Scholar
  114. 114.
    Richards AD, Rodger A (2007) Chem Soc Rev 36:471–483PubMedGoogle Scholar
  115. 115.
    Nomiya K, Kondoh Y, Onoue K, Kasuga NC, Nagano H, Oda M, Sudoh T, Sakuma S (1995) J Inorg Biochem 58:255–267Google Scholar
  116. 116.
    Noguchi R, Sugie A, Okamoto Y, Hara A, Nomiya K (2005) Bull Chem Soc Jpn 78:1953–1962Google Scholar
  117. 117.
    Berners-Price SJ, Johnson RK, Giovenella AJ, Faucette LF, Mirabelli CK, Sadler PJ (1988) J Inorg Biochem 33:285–295PubMedGoogle Scholar

Copyright information

© SBIC 2013

Authors and Affiliations

  • Veysel T. Yilmaz
    • 1
  • Elif Gocmen
    • 1
  • Ceyda Icsel
    • 1
  • Murat Cengiz
    • 2
  • Sunde Y. Susluer
    • 3
  • Orhan Buyukgungor
    • 4
  1. 1.Department of Chemistry, Faculty of Arts and SciencesUludag UniversityBursaTurkey
  2. 2.Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineUludag UniversityBursaTurkey
  3. 3.Department of Medical Biology, Medical FacultyEge UniversityIzmirTurkey
  4. 4.Department of Physics, Faculty of Arts and SciencesOndokuz Mayis UniversitySamsunTurkey

Personalised recommendations