JBIC Journal of Biological Inorganic Chemistry

, Volume 18, Issue 8, pp 895–903 | Cite as

The mechanism of copper uptake by tyrosinase from Bacillus megaterium

  • Margarita Kanteev
  • Mor Goldfeder
  • Michał Chojnacki
  • Noam Adir
  • Ayelet Fishman
Original Paper


Tyrosinase belongs to the type 3 copper enzyme family, containing a dinuclear copper center, CuA and CuB. It is mainly responsible for melanin production in a wide range of organisms. Although copper ions are essential for the activity of tyrosinase, the mechanism of copper uptake is still unclear. We have recently determined the crystal structure of tyrosinase from Bacillus megaterium (TyrBm) and revealed that this enzyme has tighter binding of CuA in comparison with CuB. Investigating copper accumulation in TyrBm, we found that the presence of copper has a more significant effect on the diphenolase activity. By decreasing the concentration of copper, we increased the diphenolase to monophenolase activity ratio twofold. Using a rational design approach, we identified five variants having an impact on copper uptake. We have found that a major role of the highly conserved Asn205 residue is to stabilize the orientation of the His204 imidazole ring in the binding site, thereby promoting the correct coordination of CuB. Further investigation of these variants revealed that Phe197, Met61, and Met184, which are located at the entrance to the binding site, not only play a role in copper uptake, but are also important for enhancing the diphenolase activity. We propose a mechanism of copper accumulation by the enzyme as well as an approach to changing the selectivity of TyrBm towards l-dopa production.

Graphical abstract


Tyrosinase Copper accumulation Bacillus megaterium Suicide inactivation 



Bicinchoninic acid


Differential scanning calorimetry


Inductively coupled plasma atomic emission spectroscopy


Protein Data Bank




Tyrosinase from Bacillus megaterium


Tyrosinase from Streptomyces castaneoglobisporus



This work was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, grant number 193/11. We gratefully thank the staff of the European Synchrotron Radiation Facility (beamlines ID23-1 and ID14-4) for provision of synchrotron radiation facilities and assistance.

Supplementary material

775_2013_1034_MOESM1_ESM.pdf (476 kb)
Supplementary material 1 (PDF 475 kb)


  1. 1.
    Gadd GM (1992) FEMS Microbiol Lett 100:197–203Google Scholar
  2. 2.
    Peña MMO, Koch KA, Thiele DJ (1998) Mol Cell Biol 18:2514–2523PubMedGoogle Scholar
  3. 3.
    Aust SD, Morehouse LA, Thomas CE (1985) J Free Radic Biol Med 1:3–25PubMedCrossRefGoogle Scholar
  4. 4.
    Rolff M, Schottenheim J, Decker H, Tuczek F (2011) Chem Soc Rev 40:4077–4098PubMedCrossRefGoogle Scholar
  5. 5.
    Waggoner DJ, Bartnikas TB, Gitlin JD (1999) Neurobiol Dis 6:221–230PubMedCrossRefGoogle Scholar
  6. 6.
    Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994) Cell 76:393–402PubMedCrossRefGoogle Scholar
  7. 7.
    Huffman DL, O’Halloran TV (2001) Annu Rev Biochem 70:677–701PubMedCrossRefGoogle Scholar
  8. 8.
    Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Science 284:805–808PubMedCrossRefGoogle Scholar
  9. 9.
    Matoba Y, Bando N, Oda K, Noda M, Higashikawa F, Kumagai T, Sugiyama M (2011) J Biol Chem 286:30219–30231PubMedCrossRefGoogle Scholar
  10. 10.
    Claus H, Decker H (2006) Syst Appl Microbiol 29:3–14PubMedCrossRefGoogle Scholar
  11. 11.
    Chang T-S (2009) Int J Mol Sci 10:2440–2475PubMedCrossRefGoogle Scholar
  12. 12.
    Burton SG (2003) Trends Biotechnol 21:543–549PubMedCrossRefGoogle Scholar
  13. 13.
    Decker H, Schweikardt T, Nillius D, Salzbrunn U, Jaenicke E, Tuczek F (2007) Gene 398:183–191PubMedCrossRefGoogle Scholar
  14. 14.
    van Holde KE, Miller KI, Decker H (2001) J Biol Chem 276:15563–15566PubMedCrossRefGoogle Scholar
  15. 15.
    Itoh S, Fukuzumi S (2007) Acc Chem Res 40:592–600PubMedCrossRefGoogle Scholar
  16. 16.
    Decker H, Rimke T (1998) J Biol Chem 273:25889–25892PubMedCrossRefGoogle Scholar
  17. 17.
    Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990PubMedCrossRefGoogle Scholar
  18. 18.
    Wood JM, Decker H, Hartmann H, Chavan B, Rokos H, Spencer JD, Hasse S, Thornton MJ, Shalbaf M, Paus R, Schallreuter KU (2009) FASEB J 23:2065–2075PubMedCrossRefGoogle Scholar
  19. 19.
    Halaouli S, Asther M, Sigoillot J, Hamdi M, Lomascolo A (2006) J Appl Microbiol 100:219–232PubMedCrossRefGoogle Scholar
  20. 20.
    Kawamura-Konishi Y, Tsuji M, Hatana S, Asanuma M, Kakuta D, Kawano T, Mukouyama E, Goto H, Suzuki H (2007) Biosci Biotechnol Biochem 71:1752–1760PubMedCrossRefGoogle Scholar
  21. 21.
    Nolan L, O’Connor K (2007) Biotechnol Lett 29:1045–1050PubMedCrossRefGoogle Scholar
  22. 22.
    Wang G, Aazaz A, Peng Z, Shen P (2000) FEMS Microbiol Lett 185:23–27PubMedCrossRefGoogle Scholar
  23. 23.
    Hernandez-Romero D, Sanchez-Amat A, Solano F (2006) FEBS J 273:257–270PubMedCrossRefGoogle Scholar
  24. 24.
    Sendovski M, Kanteev M, Shuster V, Adir N, Fishman A (2010) Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1101–1103PubMedCrossRefGoogle Scholar
  25. 25.
    Shuster V, Fishman A (2009) J Mol Microbiol Biotechnol 17:188–200PubMedCrossRefGoogle Scholar
  26. 26.
    Sendovski M, Kanteev M, Shuster Ben-Yosef V, Adir N, Fishman A (2011) J Mol Biol 405:227–237PubMedCrossRefGoogle Scholar
  27. 27.
    Ismaya WT, Rozeboom HJ, Weijn A, Mes JJ, Fusetti F, Wichers HJ, Dijkstra BW (2011) Biochemistry 50:5477–5486PubMedCrossRefGoogle Scholar
  28. 28.
    Brenner AJ, Harris ED (1995) Anal Biochem 226:80–84PubMedCrossRefGoogle Scholar
  29. 29.
    Leslie AGW (1992) In: Wolf WM, Wilson KS (eds) Joint CCP4 + ESF-EAMCB newsletter on protein crystallography 26. Science and Engineering Research Council, Daresbury, and EMBL, HamburgGoogle Scholar
  30. 30.
    McCoy AJ (2007) Acta Crystallogr Sect D Biol Crystallogr 63:32–41CrossRefGoogle Scholar
  31. 31.
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Crystallogr D Biol Crystallogr 66:213–221CrossRefGoogle Scholar
  32. 32.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr Sect D Biol Crystallogr 53:240–255CrossRefGoogle Scholar
  33. 33.
    Skubak P, Murshudov GN, Pannu NS (2004) Acta Crystallogr Sect F Struct Biol Cryst Commun 60:2196–2201CrossRefGoogle Scholar
  34. 34.
    Emsley P, Cowtan K (2004) Acta Crystallogr Sect D Biol Crystallogr 60:2126–2132CrossRefGoogle Scholar
  35. 35.
    Goldfeder M, Kanteev M, Adir N, Fishman A (2013) Biochim Biophys Acta 1834:629–633PubMedCrossRefGoogle Scholar
  36. 36.
    Goldfeder M, Egozy M, Shuster Ben-Yosef V, Adir N, Fishman A (2012) Appl Microbiol Biotechnol 97:1953–1961PubMedCrossRefGoogle Scholar
  37. 37.
    Muñoz-Muñoz JL, Garcia-Molina F, Varon R, Garcia-Ruíz PA, Tudela J, Garcia-Cánovas F, Rodríguez-López JN (2010) IUBMB Life 62:539–547PubMedCrossRefGoogle Scholar
  38. 38.
    Ramsden C, Riley P (2010) ARKIVOC (i):260–274Google Scholar
  39. 39.
    Muñoz-muñoz JL, García-molina F, García-ruiz PA, Molina-alarcón M, Tudela J, García-cánovas F, Rodríguez-lópez JN (2008) Biochem J 416:431–440PubMedCrossRefGoogle Scholar
  40. 40.
    Ramsden CA, Stratford MR, Riley PA (2009) Org Biomol Chem 7:3388–3390PubMedCrossRefGoogle Scholar
  41. 41.
    Gallas J, Littrell K, Seifert S, Zajac G, Thiyagarajan P (1999) Biophys J 77:1135–1142PubMedCrossRefGoogle Scholar
  42. 42.
    Mizuno K, Whittaker MM, Bachinger HP, Whittaker JW (2004) J Biol Chem 279:27339–27344PubMedCrossRefGoogle Scholar
  43. 43.
    Dolashka-Angelova P, Angelova M, Genova L, Stoeva S, Voelter W (1999) Spectrochim Acta Part A Mol Biomol Spectrosc 11:2249–2260CrossRefGoogle Scholar
  44. 44.
    Bauman AT, Broers BA, Kline CD, Blackburn NJ (2011) Biochemistry 50:10819–10828PubMedCrossRefGoogle Scholar
  45. 45.
    Larson CA, Adams PL, Blair BG, Safaei R, Howell SB (2010) Mol Pharmacol 78:333–339PubMedCrossRefGoogle Scholar
  46. 46.
    Shimizu A, Sasaki T, Kwon JH, Odaka A, Satoh T, Sakurai N, Sakurai T, Yamaguchi S, Samejima T (1999) J Biochem 125:662–668PubMedCrossRefGoogle Scholar
  47. 47.
    Chang T, Iverson S, Rodrigues C, Kiser C, Lew A, Germanas J, Richards J (1991) Proc Natl Acad Sci USA 88:1325–1329PubMedCrossRefGoogle Scholar
  48. 48.
    Gourdon P, Liu XY, Skjorringe T, Morth JP, Moller LB, Pedersen BP, Nissen P (2011) Nature 475:59–64PubMedCrossRefGoogle Scholar
  49. 49.
    Guo Y, Smith K, Lee J, Thiele DJ, Petris MJ (2004) J Biol Chem 279:17428–17433PubMedCrossRefGoogle Scholar
  50. 50.
    Singh SK, Roberts SA, McDevitt SF, Weichsel A, Wildner GF, Grass GB, Rensing C, Montfort WR (2011) J Biol Chem 286:37849–37857PubMedCrossRefGoogle Scholar
  51. 51.
    Yatsunyk LA, Rosenzweig AC (2007) J Biol Chem 282:8622–8631PubMedCrossRefGoogle Scholar
  52. 52.
    Valley CC, Cembran A, Perlmutter JD, Lewis AK, Labello NP, Gao J, Sachs JN (2012) J Biol Chem 287:34979–34991PubMedCrossRefGoogle Scholar
  53. 53.
    Schweikardt T, Olivares C, Solano F, Jaenicke E, Garcia-Borron JC, Decker H (2007) Pigm Cell Res 20:394–401CrossRefGoogle Scholar
  54. 54.
    Shuster Ben-Yosef V, Sendovski M, Fishman A (2010) Enzyme Microb Technol 47:372–376CrossRefGoogle Scholar

Copyright information

© SBIC 2013

Authors and Affiliations

  • Margarita Kanteev
    • 1
  • Mor Goldfeder
    • 1
  • Michał Chojnacki
    • 1
  • Noam Adir
    • 2
  • Ayelet Fishman
    • 1
  1. 1.Department of Biotechnology and Food EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations