JBIC Journal of Biological Inorganic Chemistry

, Volume 18, Issue 8, pp 883–893 | Cite as

Human anamorsin binds [2Fe–2S] clusters with unique electronic properties

  • Lucia Banci
  • Simone Ciofi-Baffoni
  • Maciej Mikolajczyk
  • Julia Winkelmann
  • Eckhard Bill
  • Maria-Eirini Pandelia
Original Paper


The eukaryotic anamorsin protein family, which has recently been proposed to be part of an electron transfer chain functioning in the early steps of cytosolic iron–sulfur (Fe/S) protein biogenesis, is characterized by a largely unstructured domain (CIAPIN1) containing two conserved cysteine-rich motifs (CX8CX2CXC and CX2CX7CX2C) whose Fe/S binding properties and electronic structures are not well defined. Here, we found that (1) each motif in human anamorsin is able to bind independently a [2Fe–2S] cluster through its four cysteine residues, the binding of one cluster mutually excluding the binding of the second, (2) the reduced [2Fe–2S]+ clusters exhibit a unique electronic structure with considerable anisotropy in their coordination environment, different from that observed in reduced, plant-type and vertebrate-type [2Fe–2S] ferredoxin centers, (3) the reduced cluster bound to the CX2CX7CX2C motif reveals an unprecedented valence localization-to-delocalization transition as a function of temperature, and (4) only the [2Fe–2S] cluster bound to the CX8CX2CXC motif is involved in the electron transfer with its physiological protein partner Ndor1. The unique electronic properties of both [2Fe–2S] centers can be interpreted by considering that both cysteine-rich motifs are located in a highly unstructured and flexible protein region, whose local conformational heterogeneity can induce anisotropy in metal coordination. This study contributes to the understanding of the functional role of the CIAPIN1 domain in the anamorsin family, suggesting that only the [2Fe–2S] cluster bound to the CX8CX2CXC motif is indispensable in the electron transfer chain assembling cytosolic Fe/S proteins.

Graphical abstract


Iron–sulfur cluster CIAPIN1 domain Ndor1 Electron transfer Mössbauer and EPR spectroscopy 



We thank Angelo Gallo (CERM) for assistance in recording the EPR spectra and Bernd Mienert for recording the Mössbauer spectra. PRIN (2009FAKHZT_001), BIO-NMR (contract no. 261863), MIUR-FIRB PROTEOMICA (RBRN07BMCT), and Ente Cassa di Risparmio are gratefully acknowledged for financial support. This work was also supported by the European Integrated Structural Biology Infrastructure (Instruct), which is part of the European Strategy Forum on Research Infrastructures and is supported by national member subscriptions. Specifically, we thank the Instruct Core Center CERM (Italy).

Supplementary material

775_2013_1033_MOESM1_ESM.pdf (279 kb)
Supplementary material 1 (PDF 278 kb)


  1. 1.
    Beinert H (2000) J Biol Inorg Chem 5:2–15PubMedCrossRefGoogle Scholar
  2. 2.
    Sticht H, Rosch P (1998) Prog Biophys Mol Biol 70:95–136PubMedCrossRefGoogle Scholar
  3. 3.
    Banci L, Bertini I, Luchinat C (1990) Struct Bond 72:113–135CrossRefGoogle Scholar
  4. 4.
    Dugad LB, La Mar GN, Banci L, Bertini I (1990) Biochemistry 29:2263–2271PubMedCrossRefGoogle Scholar
  5. 5.
    Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R (2010) Nat Chem Biol 6:758–765PubMedCrossRefGoogle Scholar
  6. 6.
    Banci L, Bertini I, Calderone V, Ciofi-Baffoni S, Giachetti A, Jaiswal D, Mikolajczyk M, Piccioli M, Winkelmann J (2013) Proc Natl Acad Sci USA 110:7136–7141PubMedCrossRefGoogle Scholar
  7. 7.
    Finn RD, Basran J, Roitel O, Wolf CR, Munro AW, Paine MJ, Scrutton NS (2003) Eur J Biochem 270:1164–1175PubMedCrossRefGoogle Scholar
  8. 8.
    Murataliev MB, Feyereisen R, Walker FA (2004) Biochim Biophys Acta 1698:1–26PubMedCrossRefGoogle Scholar
  9. 9.
    Banci L, Bertini I, Ciofi-Baffoni S, Boscaro F, Chatzi A, Mikolajczyk M, Tokatlidis K, Winkelmann J (2011) Chem Biol 18:794–804PubMedCrossRefGoogle Scholar
  10. 10.
    Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A, Martinelli M, Sideris DP, Katrakili N, Tokatlidis K (2009) Nat Struct Mol Biol 16:198–206PubMedCrossRefGoogle Scholar
  11. 11.
    Banci L, Bertini I, Cefaro C, Cenacchi L, Ciofi-Baffoni S, Felli IC, Gallo A, Gonnelli L, Luchinat E, Sideris DP, Tokatlidis K (2010) Proc Natl Acad Sci USA 107:20190–20195PubMedCrossRefGoogle Scholar
  12. 12.
    Sideris DP, Petrakis N, Katrakili N, Mikropoulou D, Gallo A, Ciofi-Baffoni S, Banci L, Bertini I, Tokatlidis K (2009) J Cell Biol 187:1007–1022PubMedCrossRefGoogle Scholar
  13. 13.
    Soler N, Craescu CT, Gallay J, Frapart YM, Mansuy D, Raynal B, Baldacci G, Pastore A, Huang ME, Vernis L (2012) FEBS J 279:2108–2119PubMedCrossRefGoogle Scholar
  14. 14.
    Andreini C, Bertini I, Cavallaro G, Najmanovich RJ, Thornton JM (2009) J Mol Biol 388:356–380PubMedCrossRefGoogle Scholar
  15. 15.
    Andreini C, Banci L, Bertini I, Elmi S, Rosato A (2007) Proteins 67:317–324PubMedCrossRefGoogle Scholar
  16. 16.
    Bertini I, Luchinat C, Provenzani A, Rosato A, Vasos PR (2002) Proteins Struct Funct Genet 46:110–127PubMedCrossRefGoogle Scholar
  17. 17.
    Gutlich P, Bill E, Trautwein AX (2011) Mössbauer spectroscopy and transition metal chemistry. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Trautwein AX, Bill E, Bominaar EL, Winkler H (1991) Struct Bond 78:1CrossRefGoogle Scholar
  19. 19.
    Bertrand P, Guigliarelli B, More C (1991) New J Chem 15:445–454Google Scholar
  20. 20.
    Palmer G, Brintzinger H, Estabrook RW (1967) Biochemistry 6:1658–1664PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng H, Xia B, Reed GH, Markley JL (1994) Biochemistry 33:3155–3164PubMedCrossRefGoogle Scholar
  22. 22.
    Xia B, Cheng H, Bandarian V, Reed GH, Markley JL (1996) Biochemistry 35:9488–9495PubMedCrossRefGoogle Scholar
  23. 23.
    Fee JA, Findling KL, Yoshida T, Hille R, Tarr GE, Hearshen DO, Dunham WR, Day EP, Kent TA, Munck E (1984) J Biol Chem 259:124–133PubMedGoogle Scholar
  24. 24.
    Dunham WR, Bearden AJ, Salmeen I, Palmer G, Sands RH, Orme-Johnson WH, Beinert H (1971) Biochim Biophys Acta 253:134–152PubMedCrossRefGoogle Scholar
  25. 25.
    Beinert H, Holm RH, Munck E (1997) Science 277:653–659PubMedCrossRefGoogle Scholar
  26. 26.
    Venkateswara Rao P, Holm RH (2004) Chem Rev 104:527–559Google Scholar
  27. 27.
    Cammack R, Rao KK, Hall DO, Johnson CE (1971) Biochem J 125:849–856PubMedGoogle Scholar
  28. 28.
    Munk E, Debrunner PG, Tsibris JCM, Gunsalus IC (1972) Biochemistry 11:863–885CrossRefGoogle Scholar
  29. 29.
    Ballmann J, Albers A, Demeshko S, Dechert S, Bill E, Bothe E, Ryde U, Meyer F (2008) Angew Chem Int Ed 47:9537–9541CrossRefGoogle Scholar
  30. 30.
    Ballmann J, Sun X, Dechert S, Bill E, Meyer F (2007) J Inorg Biochem 101:305–312PubMedCrossRefGoogle Scholar
  31. 31.
    Fleischhacker AS, Stubna A, Hsueh KL, Guo Y, Teter SJ, Rose JC, Brunold TC, Markley JL, Munck E, Kiley PJ (2012) Biochemistry 51:4453–4462PubMedCrossRefGoogle Scholar
  32. 32.
    Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoffman BM, Riggs-Gelasco PJ, Huynh BH, Johnson MK, Outten CE (2009) Biochemistry 48:9569–9581PubMedCrossRefGoogle Scholar
  33. 33.
    Meyer J, Clay MD, Johnson MK, Stubna A, Munck E, Higgins C, Wittung-Stafshede P (2002) Biochemistry 41:3096–3108PubMedCrossRefGoogle Scholar
  34. 34.
    Schünemann V, Winkler H (2000) Rep Prog Phys 63:263CrossRefGoogle Scholar
  35. 35.
    Solomon EI, Randall DW, Glaser T (2000) Coord Chem Rev 200:595–632CrossRefGoogle Scholar
  36. 36.
    Hoggins JT, Steinfink H (1976) Inorg Chem 15:1682–1685CrossRefGoogle Scholar
  37. 37.
    Achim C, Golinelli M-P, Bominaar EL, Meyer J, Munck E (1996) J Am Chem Soc 118:8168–8169CrossRefGoogle Scholar
  38. 38.
    Achim C, Bominaar EL, Meyer J, Peterson J, Munck E (1999) J Am Chem Soc 121:3704–3714CrossRefGoogle Scholar
  39. 39.
    Rao KK, Cammack R, Hall DO, Johnson CE (1971) Biochem J 122:257–265PubMedGoogle Scholar
  40. 40.
    Albers A, Demeshko S, Dechert S, Bill E, Bothe E, Meyer F (2011) Angew Chem Int Ed 50:9191–9194CrossRefGoogle Scholar
  41. 41.
    Skjeldal L, Markley JL, Coghlan VM, Vickery LE (1991) Biochemistry 30:9078–9083PubMedCrossRefGoogle Scholar
  42. 42.
    Muhlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, Zhang Y, Stubbe J, Pierrel F, Herrero E, Lillig CH, Lill R (2010) Cell Metab 12:373–385PubMedCrossRefGoogle Scholar
  43. 43.
    Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K (2012) J Am Chem Soc 134:1442–1445PubMedCrossRefGoogle Scholar
  44. 44.
    Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C, Tokatlidis K (2011) Proc Natl Acad Sci USA 108:4811–4816PubMedCrossRefGoogle Scholar
  45. 45.
    Park KA, Yun N, Shin DI, Choi SY, Kim H, Kim WK, Kanakura Y, Shibayama H, Oh YJ (2011) J Neural Transm 118:433–444PubMedCrossRefGoogle Scholar
  46. 46.
    Saito Y, Shibayama H, Tanaka H, Tanimura A, Kanakura Y (2011) Biochem Biophys Res Commun 405:303–307PubMedCrossRefGoogle Scholar
  47. 47.
    Crack JC, Green J, Thomson AJ, Le Brun NE (2012) Curr Opin Chem Biol 16:35–44PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2013

Authors and Affiliations

  • Lucia Banci
    • 1
    • 2
  • Simone Ciofi-Baffoni
    • 1
    • 2
  • Maciej Mikolajczyk
    • 1
  • Julia Winkelmann
    • 1
  • Eckhard Bill
    • 3
  • Maria-Eirini Pandelia
    • 3
    • 4
  1. 1.Magnetic Resonance Center CERMUniversity of FlorenceSesto FiorentinoItaly
  2. 2.Department of ChemistryUniversity of FlorenceSesto FiorentinoItaly
  3. 3.Max Planck Institute for Chemical Energy ConversionMülheimGermany
  4. 4.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations