In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the DrosophilaZip and ZnT genes

  • Jessica C. Lye
  • Christopher D. Richards
  • Kesang Dechen
  • Coral G. Warr
  • Richard Burke
Original Paper

Abstract

Members of the ZIP (SLC39A) and ZnT (SLC30A) families of transmembrane domain proteins are predicted to transport the essential transition metal zinc across membranes, regulating cellular zinc content and distribution via uptake and efflux at the outer plasma and organellar membranes. Twenty-four ZIP and ZnT proteins are encoded in mammalian genomes, raising questions of whether all actually transport zinc, whether several function together in the same tissues/cell types, and how the activity of these transporters is coordinated. To address these questions, we have taken advantage of the ability to manipulate several genes simultaneously in targeted cell types in Drosophila. Previously we reported zinc toxicity phenotypes caused by combining overexpression of a zinc uptake gene, dZip42C.1, with suppression of a zinc efflux gene, dZnT63C. Here we show that these phenotypes can be used as a sensitized in vivo system to detect subtle alterations in zinc transport activity that would be buffered in healthy cells. Using two adult tissues, the fly eye and midline (thorax/abdomen), we find that when overexpressed, most of the 17 DrosophilaZip and ZnT genes modify the zinc toxicity phenotypes in a manner consistent with their predicted zinc transport activity. In most cases, we can reconcile that activity with the cellular localization of an enhanced green fluorescent protein tagged version of the protein. Additionally, targeted suppression of each gene by RNA interference reveals several of the fly Zip and ZnT genes are required in the eye, indicating that numerous independent zinc transport genes are acting together in a single tissue.

Keywords

Zinc homeostasis Drosophila ZIP ZnT 

Notes

Acknowledgments

Drosophila stocks were imported into Australia by the Australian Drosophila Biomedical Research Support Facility (http://www.ozdros.com). All Drosophila RNAi lines were provided by the Vienna Drosophila RNAi Center. Confocal microscopy was done at Monash Micro Imaging, which also provided training and technical support. This research was supported by a project grant (grant number 606609) from the Australian National Health and Medical Research Council.

Supplementary material

775_2013_976_MOESM1_ESM.pdf (163 kb)
Supplementary material 1 (PDF 163 kb)

References

  1. 1.
    Berg JM, Shi Y (1996) Science 271:1081–1085PubMedCrossRefGoogle Scholar
  2. 2.
    Tubek S, Grzanka P, Tubek I (2008) Biol Trace Elem Res 122:193–196PubMedCrossRefGoogle Scholar
  3. 3.
    Kambe T, Weaver BP, Andrews GK (2008) Genesis 46:214–228PubMedCrossRefGoogle Scholar
  4. 4.
    Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK (2003) J Biol Chem 278:33474–33481PubMedCrossRefGoogle Scholar
  5. 5.
    Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S, Hojyo S, Nakayama M, Ohara O, Koseki H, Dos Santos HG, Bonafe L, Ha-Vinh R, Zankl A, Unger S, Kraenzlin ME, Beckmann JS, Saito I, Rivolta C, Ikegawa S, Superti-Furga A, Hirano T (2008) PLoS ONE 3:e3642PubMedCrossRefGoogle Scholar
  6. 6.
    Gupta A, Lutsenko S (2009) Future Med Chem 1:1125–1142. doi:10.4155/fmc.09.84 PubMedCrossRefGoogle Scholar
  7. 7.
    Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) J Biol Inorg Chem 16:1123–1134. doi:10.1007/s00775-011-0797-4 PubMedCrossRefGoogle Scholar
  8. 8.
    Andreini C, Banci L, Bertini I, Rosato A (2006) J Proteome Res 5:3173–3178PubMedCrossRefGoogle Scholar
  9. 9.
    McMahon RJ, Cousins RJ (1998) Proc Natl Acad Sci USA 95:4841–4846PubMedCrossRefGoogle Scholar
  10. 10.
    Nitzan YB, Sekler I, Hershfinkel M, Moran A, Silverman WF (2002) Brain Res Dev Brain Res 137:149–157PubMedCrossRefGoogle Scholar
  11. 11.
    Sekler I, Moran A, Hershfinkel M, Dori A, Margulis A, Birenzweig N, Nitzan Y, Silverman WF (2002) J Comp Neurol 447:201–209. doi:10.1002/cne.10224 PubMedCrossRefGoogle Scholar
  12. 12.
    Elgazar V, Razanov V, Stoltenberg M, Hershfinkel M, Huleihel M, Nitzan YB, Lunenfeld E, Sekler I, Silverman WF (2005) J Histochem Cytochem 53:905–912. doi:10.1369/jhc.4A6482.2005 PubMedCrossRefGoogle Scholar
  13. 13.
    Palmiter RD, Cole TB, Findley SD (1996) EMBO J 15:1784–1791PubMedGoogle Scholar
  14. 14.
    Seo YA, Lopez V, Kelleher SL (2011) Am J Physiol Cell Physiol 300:C1479–C1489. doi:10.1152/ajpcell.00420.2010 PubMedCrossRefGoogle Scholar
  15. 15.
    Lopez V, Kelleher SL (2009) Biochem J 422:43–52. doi:10.1042/BJ20081189 PubMedCrossRefGoogle Scholar
  16. 16.
    Guo L, Lichten LA, Ryu MS, Liuzzi JP, Wang F, Cousins RJ (2010) Proc Natl Acad Sci USA 107:2818–2823. doi:10.1073/pnas.0914941107 PubMedCrossRefGoogle Scholar
  17. 17.
    Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) Proc Natl Acad Sci USA 93:14934–14939PubMedCrossRefGoogle Scholar
  18. 18.
    Murgia C, Vespignani I, Cerase J, Nobili F, Perozzi G (1999) Am J Physiol 277:G1231–G1239PubMedGoogle Scholar
  19. 19.
    Ho LH, Ruffin RE, Murgia C, Li L, Krilis SA, Zalewski PD (2004) J Immunol 172:7750–7760PubMedGoogle Scholar
  20. 20.
    Murgia C, Grosser D, Truong-Tran AQ, Roscioli E, Michalczyk A, Ackland ML, Stoltenberg M, Danscher G, Lang C, Knight D, Perozzi G, Ruffin RE, Zalewski P (2011) Nutrients 3:910–928. doi:10.3390/nu3110910 PubMedCrossRefGoogle Scholar
  21. 21.
    Chimienti F, Devergnas S, Favier A, Seve M (2004) Diabetes 53:2330–2337PubMedCrossRefGoogle Scholar
  22. 22.
    Andrews GK (2008) Biochem Soc Trans 36:1242–1246. doi:10.1042/BST0361242 PubMedCrossRefGoogle Scholar
  23. 23.
    Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK (2007) Biol Chem 388:1301–1312. doi:10.1515/BC.2007.149 PubMedCrossRefGoogle Scholar
  24. 24.
    Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Mol Pharmacol 73:1413–1423. doi:10.1124/mol.107.043588 PubMedCrossRefGoogle Scholar
  25. 25.
    He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) Mol Pharmacol 70:171–180. doi:10.1124/mol.106.024521 PubMedGoogle Scholar
  26. 26.
    Hoch E, Lin W, Chai J, Hershfinkel M, Fu D, Sekler I (2012) Proc Natl Acad Sci USA 109:7202–7207. doi:10.1073/pnas.1200362109 PubMedCrossRefGoogle Scholar
  27. 27.
    Lye JC, Richards CD, Dechen K, Paterson D, de Jonge MD, Howard DL, Warr CG, Burke R (2012) J Exp Biol. doi:10.1242/jeb.069260 PubMedGoogle Scholar
  28. 28.
    Van Doren M, Mathews WR, Samuels M, Moore LA, Broihier HT, Lehmann R (2003) Development 130:2355–2364PubMedCrossRefGoogle Scholar
  29. 29.
    Mathews WR, Ong D, Milutinovich AB, Van Doren M (2006) Development 133:1143–1153PubMedCrossRefGoogle Scholar
  30. 30.
    Stathakis DG, Burton DY, McIvor WE, Krishnakumar S, Wright TR, O’Donnell JM (1999) Genetics 153:361–382PubMedGoogle Scholar
  31. 31.
    Hsouna A, Lawal HO, Izevbaye I, Hsu T, O’Donnell JM (2007) Dev Biol 308:30–43. doi:10.1016/j.ydbio.2007.04.047 PubMedCrossRefGoogle Scholar
  32. 32.
    Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, Multhaup G, Georgiev O, Schaffner W (2006) Nucleic Acids Res 34:4866–4877PubMedCrossRefGoogle Scholar
  33. 33.
    Wang X, Wu Y, Zhou B (2009) FASEB J 23:2650–2661PubMedCrossRefGoogle Scholar
  34. 34.
    Georgiev P, Okkenhaug H, Drews A, Wright D, Lambert S, Flick M, Carta V, Martel C, Oberwinkler J, Raghu P (2010) Cell Metab 12:386–397PubMedCrossRefGoogle Scholar
  35. 35.
    Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) Nature 448:151–156PubMedCrossRefGoogle Scholar
  36. 36.
    Ralph DM, Robinson SR, Campbell MS, Bishop GM (2010) Free Radic Biol Med 49:649–657PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2013

Authors and Affiliations

  • Jessica C. Lye
    • 1
  • Christopher D. Richards
    • 1
  • Kesang Dechen
    • 1
  • Coral G. Warr
    • 1
  • Richard Burke
    • 1
  1. 1.School of Biological SciencesMonash UniversityClaytonAustralia

Personalised recommendations