JBIC Journal of Biological Inorganic Chemistry

, Volume 18, Issue 2, pp 223–232

Coordination of peroxide to the CuM center of peptidylglycine α-hydroxylating monooxygenase (PHM): structural and computational study

  • Katarzyna Rudzka
  • Diego M. Moreno
  • Betty Eipper
  • Richard Mains
  • Dario A. Estrin
  • L. Mario Amzel
Original Paper


Many bioactive peptides, such as hormones and neuropeptides, require amidation at the C terminus for their full biological activity. Peptidylglycine α-hydroxylating monooxygenase (PHM) performs the first step of the amidation reaction—the hydroxylation of peptidylglycine substrates at the Cα position of the terminal glycine. The hydroxylation reaction is copper- and O2-dependent and requires 2 equiv of exogenous reductant. The proposed mechanism suggests that O2 is reduced by two electrons, each provided by one of two nonequivalent copper sites in PHM (CuH and CuM). The characteristics of the reduced oxygen species in the PHM reaction and the identity of the reactive intermediate remain uncertain. To further investigate the nature of the key intermediates in the PHM cycle, we determined the structure of the oxidized form of PHM complexed with hydrogen peroxide. In this 1.98-Å-resolution structure (hydro)peroxide binds solely to CuM in a slightly asymmetric side-on mode. The O–O interatomic distance of the copper-bound ligand is 1.5 Å, characteristic of peroxide/hydroperoxide species, and the Cu–O distances are 2.0 and 2.1 Å. Density functional theory calculations using the first coordination sphere of the CuM active site as a model system show that the computed energies of the side-on L3CuM(II)–O22− species and its isomeric, end-on structure L3CuM(I)–O2·− are similar, suggesting that both these intermediates are significantly populated within the protein environment. This observation has important mechanistic implications. The geometry of the observed side-on coordinated peroxide ligand in L3CuM(II)O22− is in good agreement with the results of a hybrid quantum mechanical–molecular mechanical optimization of this species.


Peptidylglycine α-hydroxylating monooxygenase Peroxide Amidation of peptides Copper-containing proteins 



Atoms in molecules


Density functional theory


Molecular mechanical


Oxidized form of peptidylglycine α-hydroxylating monooxygenase


Oxidized catalytic core of peptidylglycine α-hydroxylating monooxygenase


Peptidylglycine α-amidating monooxygenase


Peptidyl-α-hydroxyglycine α-amidating lyase


Protein Data Bank


Peptidylglycine α-hydroxylating monooxygenase


Catalytic core of peptidylglycine α-hydroxylating monooxygenase


Quantum mechanical

Supplementary material

775_2012_967_MOESM1_ESM.pdf (103 kb)
Supplementary material 1 (PDF 102 kb)


  1. 1.
    Merkler DJ, Kulathila R, Consalvo AP, Young SD, Ash DE (1992) Biochemistry 31:7282–7288PubMedCrossRefGoogle Scholar
  2. 2.
    Noguchi M, Seino H, Kochi H, Okamoto H, Tanaka T, Hirama M (1992) Biochem J 283(Pt 3):883–888PubMedGoogle Scholar
  3. 3.
    Prigge ST, Mains RE, Eipper BA, Amzel LM (2000) Cell Mol Life Sci 57:1236–1259PubMedCrossRefGoogle Scholar
  4. 4.
    Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE (1993) Protein Sci 2:489–497PubMedCrossRefGoogle Scholar
  5. 5.
    Katopodis AG, May SW (1990) Biochemistry 29:4541–4548PubMedCrossRefGoogle Scholar
  6. 6.
    Suzuki K, Ohta M, Okamoto M, Nishikawa Y (1993) Eur J Biochem 213:93–98PubMedCrossRefGoogle Scholar
  7. 7.
    Glauder J, Ragg H, Rauch J, Engels JW (1990) Biochem Biophys Res Commun 169:551–558PubMedCrossRefGoogle Scholar
  8. 8.
    Ouafik L, May V, Saffen DW, Eipper BA (1990) Mol Endocrinol 4:1497–1505PubMedCrossRefGoogle Scholar
  9. 9.
    Eipper BA, Stoffers DA, Mains RE (1992) Annu Rev Neurosci 15:57–85PubMedCrossRefGoogle Scholar
  10. 10.
    Czyzyk TA, Ning Y, Hsu MS, Peng B, Mains RE, Eipper BA, Pintar JE (2005) Dev Biol 287:301–313PubMedCrossRefGoogle Scholar
  11. 11.
    Jiang N, Kolhekar AS, Jacobs PS, Mains RE, Eipper BA, Taghert PH (2000) Dev Biol 226:118–136PubMedCrossRefGoogle Scholar
  12. 12.
    Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM (1997) Science 278:1300–1305PubMedCrossRefGoogle Scholar
  13. 13.
    Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Science 304:864–867PubMedCrossRefGoogle Scholar
  14. 14.
    Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM (1999) Nat Struct Biol 6:976–983PubMedCrossRefGoogle Scholar
  15. 15.
    Siebert X, Eipper BA, Mains RE, Prigge ST, Blackburn NJ, Amzel LM (2005) Biophys J 89:3312–3319PubMedCrossRefGoogle Scholar
  16. 16.
    Jaron S, Blackburn NJ (1999) Biochemistry 38:15086–15096PubMedCrossRefGoogle Scholar
  17. 17.
    Rhames FC, Murthy NN, Karlin KD, Blackburn NJ (2001) J Biol Inorg Chem 6:567–577PubMedCrossRefGoogle Scholar
  18. 18.
    Jaron S, Mains RE, Eipper BA, Blackburn NJ (2002) Biochemistry 41:13274–13282PubMedCrossRefGoogle Scholar
  19. 19.
    Chen P, Bell J, Eipper BA, Solomon EI (2004) Biochemistry 43:5735–5747PubMedCrossRefGoogle Scholar
  20. 20.
    Eipper BA, Quon AS, Mains RE, Boswell JS, Blackburn NJ (1995) Biochemistry 34:2857–2865PubMedCrossRefGoogle Scholar
  21. 21.
    Freeman JC, Nayar PG, Begley TP, Villafranca JJ (1993) Biochemistry 32:4826–4830PubMedCrossRefGoogle Scholar
  22. 22.
    Blackburn NJ, Rhames FC, Ralle M, Jaron S (2000) J Biol Inorg Chem 5:341–353PubMedCrossRefGoogle Scholar
  23. 23.
    Francisco WA, Blackburn NJ, Klinman JP (2003) Biochemistry 42:1813–1819PubMedCrossRefGoogle Scholar
  24. 24.
    Francisco WA, Knapp MJ, Blackburn NJ, Klinman JP (2002) J Am Chem Soc 124:8194–8195PubMedCrossRefGoogle Scholar
  25. 25.
    Francisco WA, Merkler DJ, Blackburn NJ, Klinman JP (1998) Biochemistry 37:8244–8252PubMedCrossRefGoogle Scholar
  26. 26.
    Tian G, Berry JA, Klinman JP (1994) Biochemistry 33:226–234PubMedCrossRefGoogle Scholar
  27. 27.
    Freeman JC, Villafranca JJ (1993) J Am Chem Soc 115:4923–4924CrossRefGoogle Scholar
  28. 28.
    Crespo A, Marti MA, Roitberg AE, Amzel LM, Estrin DA (2006) J Am Chem Soc 128:12817–12828PubMedCrossRefGoogle Scholar
  29. 29.
    Klinman JP (2006) J Biol Chem 281:3013–3016PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshizawa K, Kihara N, Kamachi T, Shiota Y (2006) Inorg Chem 45:3034–3041PubMedCrossRefGoogle Scholar
  31. 31.
    Evans JP, Ahn K, Klinman JP (2003) J Biol Chem 278:49691–49698PubMedCrossRefGoogle Scholar
  32. 32.
    Decker A, Solomon EI (2005) Curr Opin Chem Biol 9:152–163PubMedCrossRefGoogle Scholar
  33. 33.
    Chen P, Solomon EI (2004) J Am Chem Soc 126:4991–5000PubMedCrossRefGoogle Scholar
  34. 34.
    Kamachi T, Kihara N, Shiota Y, Yoshizawa K (2005) Inorg Chem 44:4226–4236PubMedCrossRefGoogle Scholar
  35. 35.
    Messerschmidt A, Luecke H, Huber R (1993) J Mol Biol 230:997–1014PubMedCrossRefGoogle Scholar
  36. 36.
    Bento I, Martins LO, Gato Lopes G, Armenia Carrondo M, Lindley PF (2005) Dalton Trans 3507–3513Google Scholar
  37. 37.
    Shin DS, Didonato M, Barondeau DP, Hura GL, Hitomi C, Berglund JA, Getzoff ED, Cary SC, Tainer JA (2009) J Mol Biol 385:1534–1555PubMedCrossRefGoogle Scholar
  38. 38.
    Kolhekar AS, Keutmann HT, Mains RE, Quon AS, Eipper BA (1997) Biochemistry 36:10901–10909PubMedCrossRefGoogle Scholar
  39. 39.
    Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326CrossRefGoogle Scholar
  40. 40.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255PubMedCrossRefGoogle Scholar
  41. 41.
    Collaborative Computational Project N (1994) Acta Crystallogr D Biol Crystallogr 50: 760–763Google Scholar
  42. 42.
    Frisch MJ et al (2004) Gaussian 03. Gaussian, WallingfordGoogle Scholar
  43. 43.
    Henkelman G, Arnaldsson A, Jonsson A (2006) Comput Mater Sci 36:354–360CrossRefGoogle Scholar
  44. 44.
    Crespo A, Scherlis DA, Marti MA, Ordejon P, Roitberg AE, Estrin DA (2003) J Phys Chem B 107:13728–13736CrossRefGoogle Scholar
  45. 45.
    Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 2745–2779Google Scholar
  46. 46.
    Marti MA, Scherlis DA, Doctorovich FA, Ordejon P, Estrin DA (2003) J Biol Inorg Chem 8:595–600PubMedCrossRefGoogle Scholar
  47. 47.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868PubMedCrossRefGoogle Scholar
  48. 48.
    Wang J, Cieplak P, Kollman P (2000) J Comput Chem 21:1049–1074CrossRefGoogle Scholar
  49. 49.
    Eichinger M, Tavan P, Hutter J, Parrinello M (1999) J Chem Phys 110:10452–10467CrossRefGoogle Scholar
  50. 50.
    Gubelmann MH, Williams AF (1983) Struct Bonding (Berl) 55:1CrossRefGoogle Scholar
  51. 51.
    Chufan EE, Prigge ST, Siebert X, Eipper BA, Mains RE, Amzel LM (2010) J Am Chem Soc 132:15565–15572PubMedCrossRefGoogle Scholar
  52. 52.
    Bauman AT, Yukl ET, Alkevich K, McCormack AL, Blackburn NJ (2006) J Biol Chem 281:4190–4198PubMedCrossRefGoogle Scholar
  53. 53.
    Hrycay EG, Gustafsson JA, Ingelman-Sundberg M, Ernster L (1976) Eur J Biochem 61:43–52PubMedCrossRefGoogle Scholar
  54. 54.
    Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) J Am Chem Soc 123:1403–1415PubMedCrossRefGoogle Scholar
  55. 55.
    Froland WA, Andersson KK, Lee SK, Liu Y, Lipscomb JD (1992) J Biol Chem 267:17588–17597PubMedGoogle Scholar
  56. 56.
    Wolfe MD, Lipscomb JD (2003) J Biol Chem 278:829–835PubMedCrossRefGoogle Scholar
  57. 57.
    Gherman BF, Tolman WB, Cramer CJ (2006) J Comput Chem 27:1950–1961PubMedCrossRefGoogle Scholar
  58. 58.
    Miller SM, Klinman JP (1985) Biochemistry 24:2114–2127PubMedCrossRefGoogle Scholar
  59. 59.
    Osako T, Nagatomo S, Tachi Y, Kitagawa T, Itoh S (2002) Angew Chem Int Ed 41:4325–4328CrossRefGoogle Scholar
  60. 60.
    Mirica LM, Ottenwaelder X, Stack TD (2004) Chem Rev 104:1013–1045PubMedCrossRefGoogle Scholar
  61. 61.
    Chen P, Fujisawa K, Solomon EI (2000) J Am Chem Soc 122:10177–10193CrossRefGoogle Scholar
  62. 62.
    Wada A, Harata M, Hasegawa K, Jitsukawa H, Masuda M, Mukai M, Kitagawa T, Einaga H (1998) Angew Chem Int Ed 37:798–799CrossRefGoogle Scholar
  63. 63.
    Maiti D, Lucas HR, Sarjeant AA, Karlin KD (2007) J Am Chem Soc 129:6998–6999PubMedCrossRefGoogle Scholar
  64. 64.
    Maiti D, Sarjeant AA, Karlin KD (2007) J Am Chem Soc 129:6720–6721PubMedCrossRefGoogle Scholar
  65. 65.
    Wilmot CM (2003) Biochem Soc Trans 31:493–496PubMedCrossRefGoogle Scholar
  66. 66.
    Wilmot CM, Hajdu J, McPherson MJ, Knowles PF, Phillips SE (1999) Science 286:1724–1728PubMedCrossRefGoogle Scholar
  67. 67.
    Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2012

Authors and Affiliations

  • Katarzyna Rudzka
    • 1
  • Diego M. Moreno
    • 2
  • Betty Eipper
    • 3
  • Richard Mains
    • 3
  • Dario A. Estrin
    • 2
  • L. Mario Amzel
    • 1
  1. 1.Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of MedicineJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Inorganic, Analytical and Physical ChemistryUniversity of Buenos AiresBuenos AiresArgentina
  3. 3.Department of Neuroscience and Molecular, Microbial and Structural BiologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations