JBIC Journal of Biological Inorganic Chemistry

, Volume 18, Issue 2, pp 175–181 | Cite as

Why is the molybdenum-substituted tungsten-dependent formaldehyde ferredoxin oxidoreductase not active? A quantum chemical study

Original Paper

Abstract

Formaldehyde ferredoxin oxidoreductase is a tungsten-dependent enzyme that catalyzes the oxidative degradation of formaldehyde to formic acid. The molybdenum ion can be incorporated into the active site to displace the tungsten ion, but is without activity. Density functional calculations have been employed to understand the incapacitation of the enzyme caused by molybdenum substitution. The calculations show that the enzyme with molybdenum (Mo-FOR) has higher redox potential than that with tungsten, which makes the formation of the MoVI=O complex endothermic by 14 kcal/mol. Following our previously suggested mechanism for this enzyme, the formaldehyde substrate oxidation was also investigated for Mo-FOR using the same quantum-mechanics-only model, except for the displacement of tungsten by molybdenum. The calculations demonstrate that formaldehyde oxidation occurs via a sequential two-step mechanism. Similarly to the tungsten-catalyzed reaction, the MoVI=O species performs the nucleophilic attack on the formaldehyde carbon, followed by proton transfer in concert with two-electron reduction of the metal center. The first step is rate-limiting, with a total barrier of 28.2 kcal/mol. The higher barrier is mainly due to the large energy penalty for the formation of the MoVI=O species.

Keywords

Density functional calculations Formaldehyde ferredoxin oxidoreductase Tungsten Molybdenum Selectivity 

Supplementary material

775_2012_961_MOESM1_ESM.pdf (338 kb)
Supplementary material 1. Supporting information available. Cartesian coordinates for all stationary points for formaldehyde oxidation by Mo-FOR. This material is available free of charge via the Internet. (PDF 339 kb)

References

  1. 1.
    Hille R (1996) Chem Rev 96:2757–2816PubMedCrossRefGoogle Scholar
  2. 2.
    Johnson MK, Rees DC, Adams MWW (1996) Chem Rev 96:2817–2839PubMedCrossRefGoogle Scholar
  3. 3.
    Enemark JH, Cooney JJA (2004) Chem Rev 104:1175–1200PubMedCrossRefGoogle Scholar
  4. 4.
    Sugimoto H, Tsukube H (2008) Chem Soc Rev 37:2609–2619PubMedCrossRefGoogle Scholar
  5. 5.
    Bevers LE, Hagedoorn PL, Hagen WR (2009) Coord Chem Rev 253:269–290CrossRefGoogle Scholar
  6. 6.
    Romão MJ (2009) Dalton Trans 4053–4068Google Scholar
  7. 7.
    Stewart LJ, Bailey S, Bennett B, Charnock JM, Garner CD, McAlpine AS (2000) J Mol Biol 299:593–600PubMedCrossRefGoogle Scholar
  8. 8.
    Buc J, Santini CL, Giordani R, Czjzek M, Wu LF, Giordano G (1999) Mol Microbiol 32:159–168PubMedCrossRefGoogle Scholar
  9. 9.
    Bertram PA, Schmitz RA, Linder D, Thauer RK (1994) Arch Microbial 161:220–228CrossRefGoogle Scholar
  10. 10.
    Bertram PA, Karrasch M, Schmitz RA, Böcher R, Albracht SPJ, Thauer RK (1994) Eur J Biochem 220:477–484PubMedCrossRefGoogle Scholar
  11. 11.
    Vorholt JA, Vaupel M, Thauer RK (1997) Mol Microbiol 23:1033–1042PubMedCrossRefGoogle Scholar
  12. 12.
    Boll M, Schink B, Messerschmidt A, Kroneck PMH (2005) Biol Chem 386:999–1006PubMedGoogle Scholar
  13. 13.
    Cohen HJ, Drew RT, Johnson JL, Rajagopalan KV (1973) Proc Natl Acad Sci USA 70:3655–3659PubMedCrossRefGoogle Scholar
  14. 14.
    Sevcenco AM, Bevers LE, Pinkse MWH, Krijger GC, Wolterbeek HT, Verhaert PDEM, Hagen WR, Hagedoorn PL (2010) J Bacteriol 192:4143–4152PubMedCrossRefGoogle Scholar
  15. 15.
    Leopoldini M, Russo N, Toscano M, Dulak M, Wesolowski TA (2006) Chem Eur J 12:2532–2541PubMedCrossRefGoogle Scholar
  16. 16.
    Leopoldini M, Chiodo SG, Toscano M, Russo N (2008) Chem Eur J 14:8647–8681CrossRefGoogle Scholar
  17. 17.
    Hofmann M (2008) Inorg Chem 47:5546–5548PubMedCrossRefGoogle Scholar
  18. 18.
    Metz S, Thiel W (2009) J Am Chem Soc 131:14885–14902PubMedCrossRefGoogle Scholar
  19. 19.
    Metz S, Wang D, Thiel W (2009) J Am Chem Soc 131:4628–4640PubMedCrossRefGoogle Scholar
  20. 20.
    Vincent MA, Hillier IH, Periyasamy G, Burton NA (2010) Dalton Trans 39:3816–3822Google Scholar
  21. 21.
    Szaleniec M, Borowski T, Schühle K, Witko M, Heider J (2010) J Am Chem Soc 132:6014–6024PubMedCrossRefGoogle Scholar
  22. 22.
    Liao RZ, Yu JG, Himo F (2010) Proc Natl Acad Sci USA 107:22523–22527PubMedCrossRefGoogle Scholar
  23. 23.
    Liu YF, Liao RZ, Ding WJ, Yu JG, Liu RZ (2011) J Biol Inorg Chem 16:745–752PubMedCrossRefGoogle Scholar
  24. 24.
    Liao RZ, Himo F (2011) ACS Catal 1:937–944CrossRefGoogle Scholar
  25. 25.
    Mota CS, Rivas MG, Brondino CD, Moura I, Moura JJG, González PJ, Cerqueira NMFSA (2011) J Biol Inorg Chem 16:1255–1268PubMedCrossRefGoogle Scholar
  26. 26.
    Metz S, Thiel W (2011) Coord Chem Rev 255:1085–1103CrossRefGoogle Scholar
  27. 27.
    Tiberti M, Papaleo E, Russo N, De Gioia L, Zampella G (2012) Inorg Chem 51:8331–8339PubMedCrossRefGoogle Scholar
  28. 28.
    Liao RZ, Yu JG, Himo F (2011) J Inorg Biochem 105:927–936PubMedCrossRefGoogle Scholar
  29. 29.
    Chan MK, Mukund S, Kletzin A, Adams MWW, Rees DC (1995) Science 267:1463–1469PubMedCrossRefGoogle Scholar
  30. 30.
    Hu Y, Faham S, Roy R, Adams MWW, Rees DC (1999) J Mol Biol 286:899–914PubMedCrossRefGoogle Scholar
  31. 31.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  32. 32.
    Hagedoorn PL, Chen T, Schröder I, Piersma SR, de Vries S, Hagen WR (2005) J Biol Inorg Chem 10:259–269PubMedCrossRefGoogle Scholar
  33. 33.
    Bol E, Bevers LE, Hagedoorn PL, Hagen WR (2006) J Biol Inorg Chem 11:999–1006PubMedCrossRefGoogle Scholar
  34. 34.
    Romão MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 270:1170–1176PubMedCrossRefGoogle Scholar
  35. 35.
    Frisch MJ et al (2009) Gaussian 09, revision B.01, Gaussian, WallingfordGoogle Scholar
  36. 36.
    Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029–1031CrossRefGoogle Scholar
  37. 37.
    Grimme S (2006) J Comput Chem 27:1787–1799PubMedCrossRefGoogle Scholar
  38. 38.
    Lonsdale R, Harvey JN, Mulholland AJ (2010) J Phys Chem Lett 1:3232–3237CrossRefGoogle Scholar
  39. 39.
    Siegbahn PEM, Blomberg MRA, Chen SL (2010) J Chem Theory Comput 6:2040–2044CrossRefGoogle Scholar
  40. 40.
    Chen SL, Blomberg MRA, Siegbahn PEM (2011) J Phys Chem B 115:4066–4077PubMedCrossRefGoogle Scholar
  41. 41.
    Santoro S, Liao RZ, Himo F (2011) J Org Chem 76:9246–9252PubMedCrossRefGoogle Scholar
  42. 42.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  43. 43.
    Cossi M, Gega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–691PubMedCrossRefGoogle Scholar
  44. 44.
    Sevastik R, Himo F (2007) Bioorg Chem 35:444–457PubMedCrossRefGoogle Scholar
  45. 45.
    Hopmann KH, Himo F (2008) J Chem Theory Comput 4:1129–1137CrossRefGoogle Scholar
  46. 46.
    Georgieva P, Himo F (2010) J Comput Chem 31:1707–1714PubMedGoogle Scholar
  47. 47.
    Liao RZ, Yu JG, Himo F (2011) J Chem Theory Comput 7:1494–1501CrossRefGoogle Scholar
  48. 48.
    Koehler BP, Mukund S, Conover RC, Dhawan IK, Roy R, Adams MWW, Johnson MK (1996) J Am Chem Soc 118:12391–12405CrossRefGoogle Scholar
  49. 49.
    Siegbahn PEM, Tye JW, Hall MB (2007) Chem Rev 107:4414–4435PubMedCrossRefGoogle Scholar
  50. 50.
    Siegbahn PEM, Blomberg MRA (2010) Chem Rev 110:7040–7061PubMedCrossRefGoogle Scholar
  51. 51.
    Soong SL, Chebolu V, Koch SA, O’Sullivan T, Millar M (1986) Inorg Chem 25:4067–4068CrossRefGoogle Scholar
  52. 52.
    Holm RH, Donahue JP (1993) Polyhedron 12:571–589CrossRefGoogle Scholar
  53. 53.
    Pyykkö P (1988) Chem Rev 88:563–594CrossRefGoogle Scholar
  54. 54.
    Waters T, Wang XB, Yang X, Zhang L, O’Hair RAJ, Wang LS, Wedd AG (2004) J Am Chem Soc 126:5119–5129PubMedCrossRefGoogle Scholar
  55. 55.
    Tenderholt AL, Szilagyi RK, Holm RH, Hodgson KO, Hedman B, Solomon EI (2007) J Inorg Biochem 101:1594–1600PubMedCrossRefGoogle Scholar
  56. 56.
    Kuiper DS, Douthwaite RE, Mayol AR, Wolczanski PT, Lobkovsky EB, Cundari TR, Lam OP, Meyer K (2008) Inorg Chem 47:7139–7153PubMedCrossRefGoogle Scholar
  57. 57.
    Majumdar A, Sarkar S (2009) Inorg Chim Acta 362:3493–3501CrossRefGoogle Scholar
  58. 58.
    Tucci GC, Donahue JP, Holm RH (1998) Inorg Chem 37:1602–1608CrossRefGoogle Scholar
  59. 59.
    Ueyama N, Oku H, Nakamura A (1992) J Am Chem Soc 114:7310–7311CrossRefGoogle Scholar
  60. 60.
    Lim BS, Sung KM, Holm RH (2000) J Am Chem Soc 122:7410–7411CrossRefGoogle Scholar
  61. 61.
    Sung KM, Holm RH (2001) J Am Chem Soc 123:1931–1943PubMedCrossRefGoogle Scholar
  62. 62.
    Lim BS, Holm RH (2001) J Am Chem Soc 123:1920–1930PubMedCrossRefGoogle Scholar
  63. 63.
    Tenderholt AL, Hodgson KO, Hedman B, Holm RH, Solomon EI (2012) Inorg Chem 51:3436–3442PubMedCrossRefGoogle Scholar
  64. 64.
    McNamara JP, Hillier IH, Bhachu TS, Garner CD (2005) Dalton Trans 3572–3579Google Scholar
  65. 65.
    Lee SC, Holm RH (2008) Inorg Chim Acta 361:1166–1176CrossRefGoogle Scholar
  66. 66.
    Hofmann M (2007) J Biol Inorg Chem 12:989–1001PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2012

Authors and Affiliations

  1. 1.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations