JBIC Journal of Biological Inorganic Chemistry

, Volume 18, Issue 1, pp 103–110

Characterizing the effects of the protein environment on the reduction potentials of metalloproteins

Original Paper


The reduction potentials of electron transfer proteins are critically determined by the degree of burial of the redox site within the protein and the degree of permanent polarization of the polypeptide around the redox site. Although continuum electrostatics calculations of protein structures can predict the net effect of these factors, quantifying each individual contribution is a difficult task. Here, the burial of the redox site is characterized by a dielectric radius Rp (a Born-type radius for the protein), the polarization of the polypeptide is characterized by an electret potential ϕp (the average electrostatic potential at the metal atoms), and an electret-dielectric spheres (EDS) model of the entire protein is then defined in terms of Rp and ϕp. The EDS model shows that for a protein with a redox site of charge Q, the dielectric response free energy is a function of Q2, while the electret energy is a function of Q. In addition, Rp and ϕp are shown to be characteristics of the fold of a protein and are predictive of the most likely redox couple for redox sites that undergo different redox couples.


Iron-sulfur proteins Reduction potential HiPIP Nitrogenase Ferredoxin Poisson–Boltzmann continuum electrostatics 

Supplementary material

775_2012_955_MOESM1_ESM.pdf (129 kb)
Supplementary material 1 (PDF 128 kb)


  1. 1.
    Langen R, Jensen G, Jacob U, Stephens P, Warshel A (1992) J Biol Chem 267:25625PubMedGoogle Scholar
  2. 2.
    Gunner MR, Honig B (1991) Proc Natl Acad Sci USA 88:9151PubMedCrossRefGoogle Scholar
  3. 3.
    Swartz P, Beck B, Ichiye T (1996) Biophys J 71:2958PubMedCrossRefGoogle Scholar
  4. 4.
    Ergenekan CE, Thomas D, Fischer JT, Tan ML, Eidsness MK, Kang CH, Ichiye T (2003) Biophys J 85:2818PubMedCrossRefGoogle Scholar
  5. 5.
    Beck BW, Xie Q, Ichiye T (2001) Biophys J 81:601PubMedCrossRefGoogle Scholar
  6. 6.
    Luo Y, Ergenekan C, Fischer J, Tan M, Ichiye T (2010) Biophys J 98:560PubMedCrossRefGoogle Scholar
  7. 7.
    Mouesca JM, Chen JL, Noodleman L, Bashford D, Case DA (1994) J Am Chem Soc 116:11898CrossRefGoogle Scholar
  8. 8.
    Torres RA, Lovell T, Noodleman L, Case DA (2003) J Am Chem Soc 125:1923PubMedCrossRefGoogle Scholar
  9. 9.
    Niu S, Ichiye T (2011) Mol Simul 37:572CrossRefGoogle Scholar
  10. 10.
    Niu S, Wang XB, Nichols JA, Wang L-S, Ichiye T (2003) J Phys Chem A 107:2898Google Scholar
  11. 11.
    Wang X-B, Niu S, Yang X, Ibrahim SK, Pickett CJ, Ichiye T, Wang L-S (2003) J Am Chem Soc 125:14072PubMedCrossRefGoogle Scholar
  12. 12.
    Perrin BS Jr, Ichiye T (2010) Proteins Struct Funct Bioinf 78:2798CrossRefGoogle Scholar
  13. 13.
    Niu S, Ichiye T (2009) J Am Chem Soc 131:5724PubMedCrossRefGoogle Scholar
  14. 14.
    Dolan EA, Yelle RB, Beck BW, Fischer JT, Ichiye T (2004) Biophys J 86:2030PubMedCrossRefGoogle Scholar
  15. 15.
    Böttcher CJF (1973) Theory of electric polarization: dielectrics in static fields, vol. 1. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Connolly ML (1983) Science 221:709PubMedCrossRefGoogle Scholar
  17. 17.
    Sheridan R, Allen L, Carter C (1981) J Biol Chem 256:5052–5057Google Scholar
  18. 18.
    Reiss H, Heller A (1985) J Phys Chem 89:4207CrossRefGoogle Scholar
  19. 19.
    Lewis A, Bumpus JA, Truhlar DG, Cramer CJ (2007) J Chem Educ 84:934Google Scholar
  20. 20.
    Lewis A, Bumpus JA, Truhlar DG, Cramer CJ (2004) J Chem Educ 81:586CrossRefGoogle Scholar
  21. 21.
    Han W-G, Noodleman L (2011) Inorg Chem 50:2302PubMedCrossRefGoogle Scholar
  22. 22.
    Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR (1998) J Phys Chem A 102:7787Google Scholar
  23. 23.
    Trasatti S (1986) Pure Appl Chem 58:955CrossRefGoogle Scholar
  24. 24.
    Perrin B Jr, Niu S, Ichiye T (2012) J Comput Chem (accepted)Google Scholar
  25. 25.
    Warshel A, Papazyan A, Muegge I (1997) J Biol Inorg Chem 2:143CrossRefGoogle Scholar
  26. 26.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037PubMedCrossRefGoogle Scholar
  27. 27.
    MacKerell Jr AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586Google Scholar
  28. 28.
    Luo Y, Niu S, Ichiye T (2012) J Phys Chem A 116:8918PubMedCrossRefGoogle Scholar
  29. 29.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235Google Scholar
  30. 30.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187Google Scholar
  31. 31.
    Tezcan FA, Kaiser JT, Mustafi D, Walton MY, Howard JB, Rees DC (2005) Science 309:1377Google Scholar

Copyright information

© SBIC 2012

Authors and Affiliations

  1. 1.Department of ChemistryGeorgetown UniversityWashington, D.C.USA

Personalised recommendations