JBIC Journal of Biological Inorganic Chemistry

, Volume 17, Issue 8, pp 1187–1195

Functional role of the putative iron ligands in the ferroxidase activity of recombinant human hephaestin

Original Paper


Hephaestin is a multicopper ferroxidase expressed mainly in the mammalian small intestine. The ferroxidase activity of hephaestin is thought to play an important role during iron export from intestinal enterocytes and the subsequent iron loading of the blood protein transferrin, which delivers iron to the tissues. Structurally, the ectodomain of hephaestin is predicted to resemble ceruloplasmin, the soluble ferroxidase of blood. In this study, the human hephaestin ectodomain was expressed in baby hamster kidney cells and purified to electrophoretic homogeneity. Ion exchange chromatography of purified recombinant human hephaestin (rhHp) resulted in the isolation of hephaestin fractions with distinct catalytic and spectroscopic properties. The fraction of rhHp with the highest enzymatic activity also showed an enhanced molar absorptivity at 600 nm, characteristic of type 1 copper sites. Kinetic analysis revealed that rhHp possesses both high-affinity and low-affinity binding sites for ferrous iron. To investigate the role of particular residues in iron specificity of hephaestin, mutations of putative iron ligands were introduced into rhHp using site-directed mutagenesis. Kinetic analysis of ferroxidation rates of wild-type rhHp and mutants demonstrated the important roles of hephaestin residues E960 and H965 in the observed ferroxidase activity.


Multicopper oxidase Ceruloplasmin Fet3p Iron binding Iron oxidation 



Baby hamster kidney




Dulbecco’s modified Eagle’s medium–Ham F12 nutrient mixture


Ion exchange chromatography




Recombinant human hephaestin



Supplementary material

775_2012_932_MOESM1_ESM.pdf (37 kb)
Supplementary material 1 (PDF 36 kb)


  1. 1.
    Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Nat Genet 21:195–199PubMedCrossRefGoogle Scholar
  2. 2.
    Frazer DM, Vulpe CD, McKie AT, Wilkins SJ, Trinder D, Cleghorn GJ, Anderson GJ (2001) Am J Physiol Gastrointest Liver Physiol 281:G931–G939PubMedGoogle Scholar
  3. 3.
    Bleackley MR, Wong AY, Hudson DM, Wu CH, Macgillivray RT (2009) Transfus Med Rev 23:103–123PubMedCrossRefGoogle Scholar
  4. 4.
    Aisen P, Leibman A, Zweier J (1978) J Biol Chem 253:1930–1937PubMedGoogle Scholar
  5. 5.
    Chen H, Attieh ZK, Su T, Syed BA, Gao H, Alaeddine RM, Fox TC, Usta J, Naylor CE, Evans RW, McKie AT, Anderson GJ, Vulpe CD (2004) Blood 103:3933–3939PubMedCrossRefGoogle Scholar
  6. 6.
    Edwards JA, Bannerman RM (1970) J Clin Invest 49:1869–1871PubMedCrossRefGoogle Scholar
  7. 7.
    Qian ZM, Chang YZ, Leung G, Du JR, Zhu L, Wang Q, Niu L, Xu YJ, Yang L, Ho KP, Ke Y (2007) Biochim Biophys Acta 1772:527–532PubMedCrossRefGoogle Scholar
  8. 8.
    Hudson DM, Curtis SB, Smith VC, Griffiths TA, Wong AY, Scudamore CH, Buchan AM, MacGillivray RT (2010) Am J Physiol Gastrointest Liver Physiol 298:G425–G432PubMedCrossRefGoogle Scholar
  9. 9.
    Pierre JL, Fontecave M (1999) Biometals 12:195–199PubMedCrossRefGoogle Scholar
  10. 10.
    Syed BA, Beaumont NJ, Patel A, Naylor CE, Bayele HK, Joannou CL, Rowe PS, Evans RW, Srai SK (2002) Protein Eng 15:205–214PubMedCrossRefGoogle Scholar
  11. 11.
    Sakurai T, Kataoka K (2007) Chem Rec 7:220–229PubMedCrossRefGoogle Scholar
  12. 12.
    Lindley PF, Card G, Zaitseva I, Zaitsev V, Reinhammar B, Selin-Lindgren E, Yoshida K (1997) J Biol Inorg Chem 2:454–463CrossRefGoogle Scholar
  13. 13.
    Machonkin TE, Zhang HH, Hedman B, Hodgson KO, Solomon EI (1998) Biochemistry 37:9570–9578PubMedCrossRefGoogle Scholar
  14. 14.
    Vashchenko G, Bleackley MR, Griffiths TA, MacGillivray RT (2011) Arch Biochem Biophys 514:50–56PubMedCrossRefGoogle Scholar
  15. 15.
    Young SN, Curzon G (1972) Biochem J 129:273–283PubMedGoogle Scholar
  16. 16.
    Zaitsev VN, Zaitseva I, Papiz M, Lindley PF (1999) J Biol Inorg Chem 4:579–587PubMedCrossRefGoogle Scholar
  17. 17.
    Griffiths TA, Mauk AG, MacGillivray RT (2005) Biochemistry 44:14725–14731PubMedCrossRefGoogle Scholar
  18. 18.
    Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell 50:435–443PubMedCrossRefGoogle Scholar
  19. 19.
    Kammann M, Laufs J, Schell J, Gronenborn B (1989) Nucleic Acids Res 17:5404PubMedCrossRefGoogle Scholar
  20. 20.
    Molday RS, MacKenzie D (1983) Biochemistry 22:653–660PubMedCrossRefGoogle Scholar
  21. 21.
    Cuatrecasas P (1970) J Biol Chem 245:3059–3065PubMedGoogle Scholar
  22. 22.
    Stookey LL (1970) Anal Chem 42:779–781CrossRefGoogle Scholar
  23. 23.
    Curzon G (1961) Biochem J 79:656–663PubMedGoogle Scholar
  24. 24.
    Rice EW (1962) Anal Biochem 3:452–456PubMedCrossRefGoogle Scholar
  25. 25.
    Musci G, Di Marco S, Bellenchi GC, Calabrese L (1996) J Biol Chem 271:1972–1978PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ (2005) Proc Natl Acad Sci USA 102:15459–15464PubMedCrossRefGoogle Scholar
  27. 27.
    Osaki S (1966) J Biol Chem 241:5053–5059PubMedGoogle Scholar
  28. 28.
    Huber CT, Frieden E (1970) J Biol Chem 245:3973–3978PubMedGoogle Scholar
  29. 29.
    Ryan TP, Grover TA, Aust SD (1992) Arch Biochem Biophys 293:1–8PubMedCrossRefGoogle Scholar
  30. 30.
    Brown MA, Stenberg LM, Mauk AG (2002) FEBS Lett 520:8–12PubMedCrossRefGoogle Scholar
  31. 31.
    Quintanar L, Gebhard M, Wang TP, Kosman DJ, Solomon EI (2004) J Am Chem Soc 126:6579–6589PubMedCrossRefGoogle Scholar
  32. 32.
    Chen H, Attieh ZK, Syed BA, Kuo YM, Stevens V, Fuqua BK, Andersen HS, Naylor CE, Evans RW, Gambling L, Danzeisen R, Bacouri-Haidar M, Usta J, Vulpe CD, McArdle HJ (2010) J Nutr 140:1728–1735PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Centre for Blood ResearchUniversity of British ColumbiaVancouverCanada

Personalised recommendations