JBIC Journal of Biological Inorganic Chemistry

, Volume 17, Issue 8, pp 1159–1175 | Cite as

Target binding improves relaxivity in aptamer–gadolinium conjugates

  • Elyse D. Bernard
  • Michael A. Beking
  • Karunanithi Rajamanickam
  • Eve C. Tsai
  • Maria C. DeRosa
Original Paper


MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer–gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist®. The stability of the conjugated DNA aptamer–DTPA–Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA–Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

Graphical Abstract


DNA aptamers Aptamer–gadolinium conjugates Magnetic resonance imaging DTPA Targeted contrast agents 



MCD thanks the Natural Sciences and Engineering Council of Canada (NSERC), the Canadian Foundation for Innovation, The Ottawa Hospital/Ottawa Hospital Research Institute, the Ontario Research Fund, and the Ontario Ministry of Research and Innovation for supporting this work. EDB and MAB thank NSERC for graduate funding. EDB thanks Alaa Alsaafin and Uyen Ho for technical help. The authors acknowledge Keith Bourque (Carleton University) for assistance with the T 1 measurements at 9.4 T.

Supplementary material

775_2012_930_MOESM1_ESM.pdf (106 kb)
Supplementary material 1 (PDF 105 kb)


  1. 1.
    Robertson DL, Joyce GF (1990) Nature 344:467–468PubMedCrossRefGoogle Scholar
  2. 2.
    Tuerk C, Gold L (1990) Science 249:505–510PubMedCrossRefGoogle Scholar
  3. 3.
    Ellington AD, Szostak JW (1990) Nature 346:818–822PubMedCrossRefGoogle Scholar
  4. 4.
    Silverman SK (2009) In: Li Y, Lu Y (eds) Functional nucleic acids for analytical applications. Springer, New York, pp 47–108Google Scholar
  5. 5.
    Bunka DHJ, Stockley PG (2006) Nat Rev Microbiol 4:588–596PubMedCrossRefGoogle Scholar
  6. 6.
    Bunka DHJ, Platonova O, Stockley PG (2010) Curr Opin Pharmacol 10:557–562PubMedCrossRefGoogle Scholar
  7. 7.
    Bouchard PR, Hutabarat RM, Thompson KM (2010) Annu Rev Pharmacol Toxicol 50:237–257PubMedCrossRefGoogle Scholar
  8. 8.
    Yigit MV, Mazumdar D, Kim H-K, Lee JH, Odintsov B, Lu Y (2007) ChemBioChem 8:1675–1678PubMedCrossRefGoogle Scholar
  9. 9.
    Yigit MV, Mazumdar D, Lu Y (2008) Bioconjugate Chem 19:412–417CrossRefGoogle Scholar
  10. 10.
    Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Nano Lett 7:3065–3070PubMedCrossRefGoogle Scholar
  11. 11.
    Pu Y, Zhu Z, Liu H, Zhang J, Liu J, Tan W (2010) Anal Bioanal Chem 397:3225–3233PubMedCrossRefGoogle Scholar
  12. 12.
    Xu W, Lu Y (2011) Chem Commun 47:4998–5000CrossRefGoogle Scholar
  13. 13.
    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Chem Rev 99:2293–2352PubMedCrossRefGoogle Scholar
  14. 14.
    Cotton S (2006) Lanthanide and actinide chemistry. Wiley, ChichesterGoogle Scholar
  15. 15.
    Werner EJ, Datta A, Jocher CJ, Raymond KN (2008) Angew Chem Int Ed Engl 47:8568–8580PubMedCrossRefGoogle Scholar
  16. 16.
    Caravan P (2009) Acc Chem Res 42:851–862PubMedCrossRefGoogle Scholar
  17. 17.
    Lin S-P, Brown JJ (2007) J Magn Reson Imaging 25:884–899PubMedCrossRefGoogle Scholar
  18. 18.
    Artemov D (2003) J Cell Biochem 90:518–524PubMedCrossRefGoogle Scholar
  19. 19.
    Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, McMurry TJ, Walovitch RC (1998) Radiology 207:529–538PubMedGoogle Scholar
  20. 20.
    Schwartz LH, Seltzer SE, Tempany CMC, Silverman SG, Piwnica-Worms DR, Adams DF, Herman L, Herman LA, Hooshmand R (1995) J Magn Reson Imaging 5:566–570PubMedCrossRefGoogle Scholar
  21. 21.
    Kielar F, Tei L, Terreno E, Botta M (2010) J Am Chem Soc 132:7836–7837PubMedCrossRefGoogle Scholar
  22. 22.
    Kamaly N, Kalber T, Thanou M, Bell JD, Miller AD (2009) Bioconjugate Chem 20:648–655CrossRefGoogle Scholar
  23. 23.
    Howes P, Green M, Bowers A, Parker D, Varma G, Kallumadil M, Hughes M, Warley A, Brain A, Botnar R (2010) J Am Chem Soc 132:9833–9842PubMedCrossRefGoogle Scholar
  24. 24.
    Liepold LO, Abedin MJ, Buckhouse ED, Frank JA, Young MJ, Douglas T (2009) Nano Lett 9:4520–4526PubMedCrossRefGoogle Scholar
  25. 25.
    Thurecht KJ, Blakey I, Peng H, Squires O, Hsu S, Alexander C, Whittaker AK (2010) J Am Chem Soc 132:5336–5337PubMedCrossRefGoogle Scholar
  26. 26.
    Doiron AL, Chu K, Ali A, Brannon-Peppas L (2008) Proc Natl Acad Sci USA 105:17232–17237PubMedCrossRefGoogle Scholar
  27. 27.
    Qiao R, Yang C, Gao M (2009) J Mater Chem 19:6274–6293CrossRefGoogle Scholar
  28. 28.
    De León-Rodríguez LM, Lubag A, Udugamasooriya DG, Proneth B, Brekken RA, Sun X, Kodadek T, Sherry AD (2010) J Am Chem Soc 132:12829–12831PubMedCrossRefGoogle Scholar
  29. 29.
    Shapiro MG, Westmeyer GG, Romero PA, Szablowski JO, Küster B, Shah A, Otey CR, Langer R, Arnold FH, Jasanoff A (2010) Nat Biotechnol 28:264–272PubMedCrossRefGoogle Scholar
  30. 30.
    Shapiro MG, Szablowski JO, Langer R, Jasanoff A (2009) J Am Chem Soc 131:2484–2486PubMedCrossRefGoogle Scholar
  31. 31.
    Hines JV, Ammar GM, Buss J, Schmalbrock P (1999) Bioconj Chem 10:155–158CrossRefGoogle Scholar
  32. 32.
    Cai J, Shapiro EM, Hamilton AD (2009) Bioconj Chem 20:205–208CrossRefGoogle Scholar
  33. 33.
    Hermann P, Kotek J, Kubíček V, Lukeš I (2008) Dalton Trans 23:3027–3047PubMedCrossRefGoogle Scholar
  34. 34.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Nature 355:564–566PubMedCrossRefGoogle Scholar
  35. 35.
    Kelly JA, Feigon J, Yeates TO (1996) J Mol Biol 256:417–422PubMedCrossRefGoogle Scholar
  36. 36.
    Munshi KN, Dey AK (1968) Microchim Acta 56:1059–1065CrossRefGoogle Scholar
  37. 37.
    Laurent S, Vander Elst L, Copoix F, Muller RN (2001) Invest Radiol 36:115–122PubMedCrossRefGoogle Scholar
  38. 38.
    Laurent S, Vander Elst L, Henoumont C, Muller RN (2010) Contrast Media Mol Imaging 5:305–308Google Scholar
  39. 39.
    Derome AE (1987) Modern NMR techniques for chemistry research. Pergamon, OxfordGoogle Scholar
  40. 40.
    Grobner T (2006) Nephrol Dial Transplant 21:1104–1108PubMedCrossRefGoogle Scholar
  41. 41.
    Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS (2006) J Am Soc Nephrol 17:2359–2362PubMedCrossRefGoogle Scholar
  42. 42.
    Port M, Idée J-M, Medina C, Robic C, Sabatou M, Corot C (2008) Biometals 21:469–490PubMedCrossRefGoogle Scholar
  43. 43.
    Gupta A, Shamseddin MK, Khaira A (2011) Clin Exp Dermatol 36:763–768PubMedCrossRefGoogle Scholar
  44. 44.
    Dougan H, Lyster DM, Vo CV, Stafford A, Weitz JI, Hobbs JB (2000) Nucl Med Biol 27:289–297PubMedCrossRefGoogle Scholar
  45. 45.
    Idée J-M, Port M, Robic C, Medina C, Sabatou M, Corot C (2009) J Magn Reson Imaging 30:1249–1258PubMedCrossRefGoogle Scholar
  46. 46.
    Shevchenko Y, Francis TJ, Blair DAD, Walsh R, DeRosa MC, Albert J (2011) Anal Chem 83:7027–7034PubMedCrossRefGoogle Scholar
  47. 47.
    Sun G, Feng J, Jing F, Pei F, Liu M (2003) J Magn Magn Mater 265:123–129CrossRefGoogle Scholar
  48. 48.
    Isaacman S, Kumar R, del Barco E, Kent AD, Canary JW, Jerschow A (2005) Polyhedron 24:2691–2694CrossRefGoogle Scholar
  49. 49.
    Aime S, Botta M, Panero M, Grandi M, Uggeri F (1991) Magn Reson Chem 29:923–927CrossRefGoogle Scholar
  50. 50.
    Powell DH, Dhubhghaill OMN, Pubanz D, Helm L, Lebedev YS, Schlaepfer W, Merbach AE (1996) J Am Chem Soc 118:9333–9346CrossRefGoogle Scholar
  51. 51.
    Caravan P (2006) Chem Soc Rev 35:512–523PubMedCrossRefGoogle Scholar
  52. 52.
    Millero FJ, Dexter R, Hoff E (1971) J Chem Eng Data 16:85–87CrossRefGoogle Scholar
  53. 53.
    Lide DR (ed) (2006) CRC handbook of chemistry and physics, internet version 2006. Taylor and Francis, Boca Raton.
  54. 54.
    Tóth É, Burai L, Brücher E, Merbach A (1997) J Chem Soc Dalton Trans 1587–1594Google Scholar
  55. 55.
    Caravan P, Farrar CT, Frullano L, Uppal R (2009) Contrast Media Mol Imaging 4:89–100PubMedCrossRefGoogle Scholar
  56. 56.
    Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J (2005) Invest Radiol 40:715–724PubMedCrossRefGoogle Scholar
  57. 57.
    Brasch RC, McNamara MT, Ehman RL, Couet WR, Tozer TN, Sosnovsky G, Maheswara Rao NU, Prakash I (1989) Eur J Med Chem 24:335–340CrossRefGoogle Scholar
  58. 58.
    Tóth É, Helm L, Merbach A (2002) Top Curr Chem 221:61–101CrossRefGoogle Scholar
  59. 59.
    Yang JJ, Yang J, Wei L, Zurkiya O, Yang W, Li S, Zou J, Zhou Y, Maniccia ALW, Mao H, Zhao F, Malchow R, Zhao S, Johnson J, Hu X, Krogstad E, Liu Z (2008) J Am Chem Soc 130:9260–9267PubMedCrossRefGoogle Scholar
  60. 60.
    Rudovský J, Botta M, Hermann P, Hardcastle KI, Lukeš I, Aime S (2006) Bioconj Chem 17:975–987CrossRefGoogle Scholar
  61. 61.
    Zhang Z, Greenfield MT, Spiller M, McMurry TJ, Lauffer RB, Caravan P (2005) Angew Chem Int Ed 44:6766–6769CrossRefGoogle Scholar
  62. 62.
    Parac-Vogt TN, Kimpe K, Laurent S, Piérart C, Vander Elst L, Muller RN, Binnemans K (2004) Eur J Inorg Chem 17:3538–3543Google Scholar
  63. 63.
    Mastarone DJ, Harrison VSR, Eckermann AL, Parigi G, Luchinat C, Meade TJ (2011) J Am Chem Soc 133:5329–5337PubMedCrossRefGoogle Scholar
  64. 64.
    Avedano S, Tei L, Lombardi A, Giovenzana GB, Aime S, Longo D, Botta M (2007) Chem Commun 4726–4728Google Scholar
  65. 65.
    Janas T, Janas T (2011) Cell Mol Biol Lett 16:25–39PubMedCrossRefGoogle Scholar
  66. 66.
    Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W (2008) J Proteome Res 7:2133–2139PubMedCrossRefGoogle Scholar
  67. 67.
    Berezovski MV, Lechmann M, Musheev MU, Mak TW, Krylov SN (2008) J Am Chem Soc 130:9137–9143PubMedCrossRefGoogle Scholar
  68. 68.
    Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ (2006) Hemostasis and thrombosis: basic principles and clinical practice, 5th edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  69. 69.
    Oster ZH, Srivastava SC, Som P, Meinken GE, Scudder LE, Yamamoto K, Atkins HL, Brill AB, Coller BS (1985) Proc Natl Acad Sci USA 82:3465–3468PubMedCrossRefGoogle Scholar
  70. 70.
    Spuentrup E, Buecker A, Katoh M, Wiethoff AJ, Parsons EC Jr, Botnar RM, Weisskoff RM, Graham PB, Manning WJ, Günther RW (2005) Circulation 111:1377–1382PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2012

Authors and Affiliations

  • Elyse D. Bernard
    • 1
  • Michael A. Beking
    • 1
  • Karunanithi Rajamanickam
    • 2
  • Eve C. Tsai
    • 2
  • Maria C. DeRosa
    • 1
  1. 1.Department of Chemistry, Ottawa-Carleton Chemistry InstituteCarleton UniversityOttawaCanada
  2. 2.C2 Neurosciences Unit, Ottawa Hospital Research InstituteThe Ottawa HospitalOttawaCanada

Personalised recommendations