JBIC Journal of Biological Inorganic Chemistry

, Volume 17, Issue 6, pp 961–974 | Cite as

Identification of [CuCl(acac)(tmed)], a copper(II) complex with mixed ligands, as a modulator of Cu,Zn superoxide dismutase (Sod1p) activity in yeast

  • Ioana Dumitru
  • Cristian D. Ene
  • Augustin M. Ofiteru
  • Codruta Paraschivescu
  • Augustin M. Madalan
  • Ion Baciu
  • Ileana C. FarcasanuEmail author
Original Paper


Superoxide dismutases (SODs) stand in the prime line of enzymatic antioxidant defense in nearly all eukaryotic cells exposed to oxygen, catalyzing the breakdown of the superoxide anionic radical to O2 and H2O2. Overproduction of superoxide correlates with numerous pathophysiological conditions, and although the native enzyme can be used as a therapeutic agent in superoxide-associated conditions, synthetic low molecular weight mimetics are preferred in terms of cost, administration mode, and bioavailability. In this study we make use of the model eukaryote Saccharomyces cerevisiae to investigate the SOD-mimetic action of a mononuclear mixed-ligand copper(II) complex, [CuCl(acac)(tmed)] (where acac is acetylacetonate anion and tmed is N,N,N′,N′-tetramethylethylenediamine). Taking advantage of an easily reproducible phenotype of yeast cells which lack Cu–Zn SOD (Sod1p), we found that the compound could act either as a superoxide scavenger in the absence of native Sod1p or as a Sod1p modulator which behaved differently under various genetic backgrounds.


Superoxide dismutase SOD1 modulator Cu(II) complex Saccharomyces cerevisiae Oxidative stress 



Acetylacetonate anion


Copper- and zinc-containing superoxide dismutase


2-(N-Morpholino)ethanesulfonic acid


Manganese-containing superoxide dismutase


3-(N-Morpholino)propanesulfonic acid


Nitro blue tetrazolium


Optical density of the cellular suspension at 600 nm




Reactive oxygen species


Superoxide dismutase


Synthetic complete medium containing 2 % dextrose


Synthetic complete medium containing 2 % dextrose lacking lysine






Yeast extract–peptone–dextrose



The authors are grateful to Iuliana Gruia for helpful discussion and technical assistance. This work was supported by the Ministry of Education and Research of Romania through the Grant-in-Aid PNII Idei_965, 176/2007, and by the postdoctoral program POSDRU/89/1.5/S/60746 of the European Social Fund.


  1. 1.
    Longo VD, Gralla EB, Valentine JS (1996) J Biol Chem 271:12275–12280PubMedCrossRefGoogle Scholar
  2. 2.
    Valentine JS, Wertz DL, Lyons TJ, Liou LL, Goto JJ, Gralla EB (1998) Curr Opin Chem Biol 2:253–262PubMedCrossRefGoogle Scholar
  3. 3.
    Fridovich I (1978) Science 201:875–880PubMedCrossRefGoogle Scholar
  4. 4.
    Emerit J, Michelson AM (1982) Sem Hop 58:2670–2675PubMedGoogle Scholar
  5. 5.
    Stadtman ER (1993) Annu Rev Biochem 62:797–821PubMedCrossRefGoogle Scholar
  6. 6.
    Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Free Radic Biol Med 43:477–503PubMedCrossRefGoogle Scholar
  7. 7.
    Finkel T (2003) Curr Opin Cell Biol 15:247–254PubMedCrossRefGoogle Scholar
  8. 8.
    Liu H, Colavitti R, Rovira II, Finkel T (2005) Circ Res 97:967–974PubMedCrossRefGoogle Scholar
  9. 9.
    McCord JM, Edeas MA (2005) Biomed Pharmacother 59:139–142PubMedCrossRefGoogle Scholar
  10. 10.
    McCord JM, Fridovich I (1969) J Biol Chem 244:6049–6055PubMedGoogle Scholar
  11. 11.
    Weisiger RA, Fridovich I (1973) J Biol Chem 248:4793–4796PubMedGoogle Scholar
  12. 12.
    Halliwell B, Gutteridge JMC (1985) In: Baum H, Gergely J, Fanburg BL (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 89–193Google Scholar
  13. 13.
    Mc Cord JM (1974) Science 185:529–531Google Scholar
  14. 14.
    Maxwell SR (1995) Drugs 49:345–361PubMedCrossRefGoogle Scholar
  15. 15.
    Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Joint Bone Spine 74:324–329PubMedCrossRefGoogle Scholar
  16. 16.
    Levin ED (2005) Curr Alzheimer Res 2:191–196PubMedCrossRefGoogle Scholar
  17. 17.
    Pong K (2003) Expert Opin Biol Ther 3:127–139PubMedCrossRefGoogle Scholar
  18. 18.
    Muscoli C, Cuzzocrea S, Riley DP, Zweier JL, Thiemermann C, Wnag ZQ, Salvemini D (2003) Br J Pharmacol 140:445–460PubMedCrossRefGoogle Scholar
  19. 19.
    Emerit J, Pelletier S, Likforman J, Pasquier C, Thuillier A (1991) Free Radic Res Commun 12–13:563–569PubMedCrossRefGoogle Scholar
  20. 20.
    Rao VS, Goldstein S, Czapski G (1991) Free Radic Res Commun 12–13:67–73PubMedCrossRefGoogle Scholar
  21. 21.
    Batinić-Haberle I, Rebouças JS, Spasojević I (2010) Antioxid Redox Signal 13:877–918PubMedCrossRefGoogle Scholar
  22. 22.
    Saczewski F, Dziemidowicz-Borys E, Bednarski PJ, Gdaniec M (2007) Arch Pharm (Weinheim) 340:333–338CrossRefGoogle Scholar
  23. 23.
    Barik A, Mishra B, Kunwar A, Kadam RM, Shen L, Dutta S, Padhye S, Satpati AK, Zhang HY, Priyadarsini KI (2007) Eur J Med Chem 42:431–439PubMedCrossRefGoogle Scholar
  24. 24.
    Fujimori T, Yamada S, Yasui H, Sakurai H, In Y, Ishida T (2005) J Biol Inorg Chem 10:831–841PubMedCrossRefGoogle Scholar
  25. 25.
    Schepetkin I, Potapov A, Khlebnikov A, Korotkova E, Lukina A, Malovichko G, Kirpotina L, Quinn MT (2006) J Biol Inorg Chem 11:499–513PubMedCrossRefGoogle Scholar
  26. 26.
    Pettinari C, Pettinari R (2005) Coord Chem Rev 249:663–691CrossRefGoogle Scholar
  27. 27.
    Gao F, Chao H, Zhou F, Yuan YX, Peng B, Ji LN (2006) J Inorg Biochem 100:1487–1494PubMedCrossRefGoogle Scholar
  28. 28.
    Annaraj J, Srinivasan S, Ponvel KM, Athappan P (2005) J Inorg Biochem 99:669–676PubMedCrossRefGoogle Scholar
  29. 29.
    Egner PA, Kensler TW (1985) Carcinogenesis 6:1167–1172PubMedCrossRefGoogle Scholar
  30. 30.
    Potapov AS, Nudnova EA, Domina GA, Kirpotina LN, Quinn MT, Khlebnikov AI, Schepetkin IA (2009) Dalton Trans 23:4488–4498PubMedCrossRefGoogle Scholar
  31. 31.
    Safavi M, Foroumadi A, Nakhjiri M, Abdollahi M, Shafiee A, Ilkhani H, Ganjali MR, Hosseinimehr SJ, Emami S (2010) Bioorg Med Chem Lett 20:3070–3073PubMedCrossRefGoogle Scholar
  32. 32.
    Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z (2012) St Clair D, Batinic-Haberle I. Biochim Biophys Acta 1822:794–814PubMedCrossRefGoogle Scholar
  33. 33.
    Jamieson DJ (1998) Yeast 14:1511–1527PubMedCrossRefGoogle Scholar
  34. 34.
    Carmel-Harel O, Storz G (2000) Annu Rev Microbiol 54:439–461PubMedCrossRefGoogle Scholar
  35. 35.
    Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY (1992) Proc Natl Acad Sci USA 89:10405–10409PubMedCrossRefGoogle Scholar
  36. 36.
    Weisiger RA, Fridovich I (1973) J Biol Chem 248:4793–4796PubMedGoogle Scholar
  37. 37.
    Gralla EB, Kosman DJ (1992) Adv Genet 30:251–319PubMedCrossRefGoogle Scholar
  38. 38.
    Culotta VC (2000) Curr Top Cell Regul 36:117–132PubMedCrossRefGoogle Scholar
  39. 39.
    Sturtz LA, Culotta VC (2002) Methods Enzymol 349:167–172PubMedCrossRefGoogle Scholar
  40. 40.
    Liu XF, Elashvili I, Gralla EB, Valentine JS, Lapinskas P, Culotta VC (1992) J Biol Chem 267:18298–18302PubMedGoogle Scholar
  41. 41.
    Bermingham-McDonogh O, Gralla EB, Valentine JS (1988) Proc Natl Acad Sci USA 85:4789–4793PubMedCrossRefGoogle Scholar
  42. 42.
    Bilinski T, Krawiec Z, Liczmanski A, Litwinska J (1985) Biochem Biophys Res Commun 130:533–539PubMedCrossRefGoogle Scholar
  43. 43.
    Chang EC, Kosman DJ (1990) J Bacteriol 172:1840–1845PubMedGoogle Scholar
  44. 44.
    Zyracka E, Zadrag R, Kozioł S, Krzepiłko A, Bartosz G, Biliński T (2005) Acta Biochim Pol 52:679–684PubMedGoogle Scholar
  45. 45.
    Liochev SI, Fridovich I (2005) Free Radic Biol Med 38:146–147PubMedCrossRefGoogle Scholar
  46. 46.
    Leitch JM, Yick PJ, Culotta VC (2009) J Biol Chem 284:24679–24683PubMedCrossRefGoogle Scholar
  47. 47.
    Bastow EL, Gourlay CW, Tuite MF (2011) Biochem Soc Trans 39:1482–1487PubMedCrossRefGoogle Scholar
  48. 48.
    De Vizcaya-Ruiz A, Rivero-Muller A, Ruiz-Ramirez L, Kass GEN, Kelland LR, Orr RM, Dobrota M (2000) Toxicol Vitr 14:1–5CrossRefGoogle Scholar
  49. 49.
    Garcia-Mora I, Ruiz-Ramírez L, Gómez-Ruiz C, Tinoco-Méndez M, Márquez-Quiñones A (2001) Metal Based Drugs 8:19–28CrossRefGoogle Scholar
  50. 50.
    Bravo-Gómez ME, García-Ramos JC, Garcia-Mora I, Ruiz-Azuara L (2009) J Inorg Biochem 103:299–309PubMedCrossRefGoogle Scholar
  51. 51.
    Onawumi OOE, Odunola OA, Suresh E, Paul P (2011) Inorg Chem Commun 14:1626–1631CrossRefGoogle Scholar
  52. 52.
    Zhang L, Xu D, Xu Y, Gu J (1997) Acta Crystallogr C53:299–301Google Scholar
  53. 53.
    Gasque L, Moreno-Esparza R, Ruiz-Ramírez L, Medina-Dickinson G (1999) Acta Crystallogr C55:1063–1065Google Scholar
  54. 54.
    Huang R, Wallqvist A, Covell DG (2005) Biochem Pharmacol 69:1009–1039PubMedCrossRefGoogle Scholar
  55. 55.
    Jalilehvand F, Ishii Y, Hidai M, Fukuda Y (1996) J Chem Soc Dalton Trans 3251–3256Google Scholar
  56. 56.
    Socrates G (1994) Infrared and raman characteristic group frequencies: tables and charts. Wiley, ChichesterGoogle Scholar
  57. 57.
    Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Yeast 14:115–132PubMedCrossRefGoogle Scholar
  58. 58.
    Sherman F (1991) Gurthie C, Fink GR (ed) Getting started with yeast. Methods in enzymology. Academic Press, OrlandoGoogle Scholar
  59. 59.
    Shitamukai A, Mizunuma M, Hirata D, Takahashi H, Miyakawa T (2000) Biosci Biotechnol Biochem 64:1942–1946PubMedCrossRefGoogle Scholar
  60. 60.
    Flohe L, Otting F (1984) Methods Enzymol 105:93–104PubMedCrossRefGoogle Scholar
  61. 61.
    Lapinskas PJ, Lin SJ, Culotta VC (1996) Mol Microbiol 21:519–528PubMedCrossRefGoogle Scholar
  62. 62.
    Huang TT, Raineri I, Eggerding F, Epstein CJ (2005) Methods Enzymol 349:191–213CrossRefGoogle Scholar
  63. 63.
    Furukawa Y, Torres AS, O’Halloran TV (2004) EMBO J 23:2872–2881PubMedCrossRefGoogle Scholar
  64. 64.
    Mulford KE, Fassler JS (2011) Eukaryot Cell 10:761–769PubMedCrossRefGoogle Scholar
  65. 65.
    Lee J, Spector D, Godon C, Labarre J, Toledano MB (1999) J Biol Chem 274:4537–4544PubMedCrossRefGoogle Scholar
  66. 66.
    Park SG, Cha M-K, Jeong W, Kim I-H (2000) J Biol Chem 275:5723–5732PubMedCrossRefGoogle Scholar
  67. 67.
    Chae HZ, Chung SJ, Rhee SG (1994) J Biol Chem 269:27670–27678PubMedGoogle Scholar
  68. 68.
    Iwai K, Naganuma A, Kuge S (2010) J Biol Chem 285:10597–10604PubMedCrossRefGoogle Scholar
  69. 69.
    Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD (1997) J Biol Chem 272:23469–23472PubMedCrossRefGoogle Scholar
  70. 70.
    Lee M, Hyun D, Halliwell B, Jenner P (2001) J Neurochem 76:998–1009PubMedCrossRefGoogle Scholar
  71. 71.
    Pias EK, Ekshyyan OY, Rhoads CA, Fuseler J, Harrison L, Aw TY (2003) J Biol Chem 278:13294–13301PubMedCrossRefGoogle Scholar
  72. 72.
    Wang P, Chen H, Qin H, Sankarapandi S, Becher MW, Wong PC, Zweier JL (1998) Proc Natl Acad Sci USA 95:4556–4560PubMedCrossRefGoogle Scholar
  73. 73.
    Haque ME, Asanuma M, Higashi Y, Miyazaki I, Tanaka K, Ogawa N (2003) Neurosci Res 47:31–37PubMedCrossRefGoogle Scholar
  74. 74.
    Celsi F, Ferri A, Casciati A, D’Ambrosi N, Rotilio G, Costa A, Volonte C, Carri MT (2004) Neurochem Int 44:25–33PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2012

Authors and Affiliations

  • Ioana Dumitru
    • 1
  • Cristian D. Ene
    • 1
  • Augustin M. Ofiteru
    • 1
  • Codruta Paraschivescu
    • 1
  • Augustin M. Madalan
    • 2
  • Ion Baciu
    • 1
  • Ileana C. Farcasanu
    • 1
    Email author
  1. 1.Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of ChemistryUniversity of BucharestBucharestRomania
  2. 2.Department of Inorganic ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations