Electron self-exchange and self-amplified posttranslational modification in the hemoglobins from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002

  • Matthew R. Preimesberger
  • Matthew P. Pond
  • Ananya Majumdar
  • Juliette T. J. Lecomte
Original Paper


Many heme proteins undergo covalent attachment of the heme group to a protein side chain. Such posttranslational modifications alter the thermodynamic and chemical properties of the holoprotein. Their importance in biological processes makes them attractive targets for mechanistic studies. We have proposed a reductively driven mechanism for the covalent heme attachment in the monomeric hemoglobins produced by the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 (GlbN) (Nothnagel et al. in J Biol Inorg Chem 16:539–552, 2011). These GlbNs coordinate the heme iron with two axial histidines, a feature that distinguishes them from most hemoglobins and conditions their redox properties. Here, we uncovered evidence for an electron exchange chain reaction leading to complete heme modification upon substoichiometric reduction of GlbN prepared in the ferric state. The GlbN electron self-exchange rate constants measured by NMR spectroscopy were on the order of 102–103 M−1 s−1 and were consistent with the proposed autocatalytic process. NMR data on ferrous and ferric Synechococcus GlbN in solution indicated little dependence of the structure on the redox state of the iron or cross-link status of the heme group. This allowed the determination of lower bounds to the cross-exchange rate constants according to Marcus theory. The observations illustrate the ability of bishistidine hemoglobins to undergo facile interprotein electron transfer and the chemical relevance of such transfer for covalent heme attachment.


Truncated hemoglobin 2/2 hemoglobin Heme posttranslational modification Hybrid b/c heme 



Electron self-exchange


Electron transfer


Hemoglobin produced by Synechococcus sp. PCC 7002 or Synechocystis sp. PCC 6803


GlbN with covalently attached heme


GlbN with noncovalently attached heme


Glucose oxidase/d-glucose/catalase


Heteronuclear single quantum coherence


Posttranslational modification



This study was supported by National Science Foundation grant MCB-0349409. NMR facilities and resources at Johns Hopkins University were provided by the Biomolecular NMR Center. The authors thank Selena Rice for assistance with the optical measurements, Richard Himes, Ryan Peterson, and Kenneth Karlin for the use of their stopped-flow equipment, and Christopher Falzone for useful discussions and careful reading of the manuscript. Henry Nothnagel’s insight into heme chemistry was essential in the initial phases of the work. Figure 1a was prepared with Molscript [49].

Supplementary material

775_2012_880_MOESM1_ESM.pdf (3.3 mb)
Supporting Information (PDF 3393 kb)


  1. 1.
    Vinogradov SN, Moens L (2008) J Biol Chem 283:8773–8777PubMedCrossRefGoogle Scholar
  2. 2.
    Kakar S, Sturms R, Tiffany A, Nix JC, DiSpirito AA, Hargrove MS (2011) Biochemistry 50:4273–4280PubMedCrossRefGoogle Scholar
  3. 3.
    Scott NL, Falzone CJ, Vuletich DA, Zhao J, Bryant DA, Lecomte JTJ (2002) Biochemistry 41:6902–6910PubMedCrossRefGoogle Scholar
  4. 4.
    Scott NL, Xu Y, Shen G, Vuletich DA, Falzone CJ, Li Z, Ludwig M, Pond MP, Preimesberger MR, Bryant DA, Lecomte JTJ (2010) Biochemistry 49:7000–7011PubMedCrossRefGoogle Scholar
  5. 5.
    Couture M, Das TK, Savard PY, Ouellet Y, Wittenberg JB, Wittenberg BA, Rousseau DL, Guertin M (2000) Eur J Biochem 267:4770–4780PubMedCrossRefGoogle Scholar
  6. 6.
    Scott NL, Lecomte JTJ (2000) Protein Sci 9:587–597PubMedCrossRefGoogle Scholar
  7. 7.
    Vu BC, Jones AD, Lecomte JTJ (2002) J Am Chem Soc 124:8544–8545PubMedCrossRefGoogle Scholar
  8. 8.
    Vu BC, Vuletich DA, Kuriakose SA, Falzone CJ, Lecomte JTJ (2004) J Biol Inorg Chem 9:183–194PubMedCrossRefGoogle Scholar
  9. 9.
    Bowman SE, Bren KL (2008) Nat Prod Rep 25:1118–1130PubMedCrossRefGoogle Scholar
  10. 10.
    Pearson AR, Elmore BO, Yang C, Ferrara JD, Hooper AB, Wilmot CM (2007) Biochemistry 46:8340–8349PubMedCrossRefGoogle Scholar
  11. 11.
    Huang L, Wojciechowski G, Ortiz de Montellano PR (2006) J Biol Chem 281:18983–18988PubMedCrossRefGoogle Scholar
  12. 12.
    Nothnagel HJ, Preimesberger MR, Pond MP, Winer BY, Adney EM, Lecomte JTJ (2011) J Biol Inorg Chem 16:539–552PubMedCrossRefGoogle Scholar
  13. 13.
    Vuletich DA, Falzone CJ, Lecomte JTJ (2006) Biochemistry 45:14075–14084PubMedCrossRefGoogle Scholar
  14. 14.
    Englander SW, Calhoun DB, Englander JJ (1987) Anal Biochem 161:300–306PubMedCrossRefGoogle Scholar
  15. 15.
    Di Iorio EE (1981) Methods Enzymol 76:57–72PubMedCrossRefGoogle Scholar
  16. 16.
    Johnson KA, Simpson ZB, Blom T (2009) Anal Biochem 387:30–41PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson KA (2009) Methods Enzymol 467:601–626PubMedCrossRefGoogle Scholar
  18. 18.
    Bilsel O, Zitzewitz JA, Bowers KE, Matthews CR (1999) Biochemistry 38:1018–1029PubMedCrossRefGoogle Scholar
  19. 19.
    Falzone CJ, Vu BC, Scott NL, Lecomte JTJ (2002) J Mol Biol 324:1015–1029PubMedCrossRefGoogle Scholar
  20. 20.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) J Biomol NMR 6:277–293PubMedCrossRefGoogle Scholar
  21. 21.
    Goddard TD, Kneller DG (2006) Sparky 3. University of California, San FranciscoGoogle Scholar
  22. 22.
    Falzone CJ, Lecomte JTJ (2002) J Biomol NMR 23:71–72PubMedCrossRefGoogle Scholar
  23. 23.
    Pond MP, Vuletich DA, Falzone CJ, Majumdar A, Lecomte JTJ (2009) Biomol NMR Assign 3:211–214PubMedCrossRefGoogle Scholar
  24. 24.
    Geen H, Freeman R (1991) J Magn Reson 93:93–141Google Scholar
  25. 25.
    Farrow NA, Zhang O, Forman-Kay JD, Kay LE (1994) J Biomol NMR 4:727–734PubMedCrossRefGoogle Scholar
  26. 26.
    Emsley L, Bodenhausen G (1990) Chem Phys Lett 165:469–476CrossRefGoogle Scholar
  27. 27.
    Kay LE, Torchia DA, Bax A (1989) Biochemistry 28:8972–8979PubMedCrossRefGoogle Scholar
  28. 28.
    Piotto M, Saudek V, Sklenár V (1992) J Biomol NMR 2:661–665PubMedCrossRefGoogle Scholar
  29. 29.
    Shen Y, Delaglio F, Cornilescu G, Bax A (2009) J Biomol NMR 44:213–223PubMedCrossRefGoogle Scholar
  30. 30.
    Emerson SD, La Mar GN (1990) Biochemistry 29:1556–1566PubMedCrossRefGoogle Scholar
  31. 31.
    Brünger AT (1992) X-PLOR, version 3.1. A system for X-ray crystallography and NMR. Yale University Press, New HavenGoogle Scholar
  32. 32.
    Banci L, Bertini I, Cavallaro G, Giachetti A, Luchinat C, Parigi G (2004) J Biomol NMR 28:249–261PubMedCrossRefGoogle Scholar
  33. 33.
    Schwieters CD, Kuszewski JJ, Clore GM (2006) Prog NMR Spectrosc 619(48):47–62CrossRefGoogle Scholar
  34. 34.
    Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) J Biomol NMR 621(41):179–189CrossRefGoogle Scholar
  35. 35.
    Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J Chem Phys 71:4546–4553CrossRefGoogle Scholar
  36. 36.
    Vu BC, Nothnagel HJ, Vuletich DA, Falzone CJ, Lecomte JTJ (2004) Biochemistry 43:12622–12633PubMedCrossRefGoogle Scholar
  37. 37.
    Simonneaux G, Bondon A (2005) Chem Rev 105:2627–2646PubMedCrossRefGoogle Scholar
  38. 38.
    Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322Google Scholar
  39. 39.
    Hoy JA, Smagghe BJ, Halder P, Hargrove MS (2007) Protein Sci 16:250–260PubMedCrossRefGoogle Scholar
  40. 40.
    Davidson VL (2000) Acc Chem Res 33:87–93PubMedCrossRefGoogle Scholar
  41. 41.
    Bonamore A, Boffi A (2008) IUBMB Life 60:19–28PubMedCrossRefGoogle Scholar
  42. 42.
    Gardner PR (2005) J Inorg Biochem 99:247–266PubMedCrossRefGoogle Scholar
  43. 43.
    Gardner PR, Gardner AM, Brashear WT, Suzuki T, Hvitved AN, Setchell KD, Olson JS (2006) J Inorg Biochem 100:542–550PubMedCrossRefGoogle Scholar
  44. 44.
    Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B, Wittenberg J, Guertin M (2002) Proc Natl Acad Sci USA 99:5902–5907PubMedCrossRefGoogle Scholar
  45. 45.
    Fago A, Mathews AJ, Moens L, Dewilde S, Brittain T (2006) FEBS Lett 580:4884–4888PubMedCrossRefGoogle Scholar
  46. 46.
    Kiger L, Tilleman L, Geuens E, Hoogewijs D, Lechauve C, Moens L, Dewilde S, Marden MC (2011) PLoS ONE 6:e20478PubMedCrossRefGoogle Scholar
  47. 47.
    Kakar S, Hoffman FG, Storz JF, Fabian M, Hargrove MS (2010) Biophys Chem 152:1–14PubMedCrossRefGoogle Scholar
  48. 48.
    Nothnagel HJ, Love N, Lecomte JT (2009) J Inorg Biochem 103:107–116PubMedCrossRefGoogle Scholar
  49. 49.
    Kraulis P (1991) J Appl Crystallogr 24:946–950CrossRefGoogle Scholar

Copyright information

© SBIC 2012

Authors and Affiliations

  • Matthew R. Preimesberger
    • 1
  • Matthew P. Pond
    • 1
  • Ananya Majumdar
    • 2
  • Juliette T. J. Lecomte
    • 1
  1. 1.T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreUSA
  2. 2.Biomolecular NMR CenterJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations