JBIC Journal of Biological Inorganic Chemistry

, Volume 17, Issue 2, pp 301–309 | Cite as

Mobilization of storage iron is reflected in the iron isotopic composition of blood in humans

  • Karin Hotz
  • Pierre-Alexandre Krayenbuehl
  • Thomas WalczykEmail author
Original Paper


We recently showed in an animal model that iron isotopic composition varies substantially between different organs. For instance, iron in ferritin-rich organs—such as the major storage tissues liver, spleen, and bone marrow—contain a larger fraction of the heavy iron isotopes compared with other tissues, including blood. As a consequence, partitioning of body iron into red blood cells and storage compartments should be reflected in the isotopic pattern of blood iron. To confirm this hypothesis, we monitored blood iron isotope patterns in iron-overloaded subjects undergoing phlebotomy treatment by multicollector inductively coupled plasma mass spectrometry. We found that bloodletting and consequential replacement of lost blood iron by storage iron led to a substantial increase of the heavy isotope fraction in the blood. The progress of iron depletion therapy and blood loss was quantitatively traceable by isotopic shifts of as much as +1‰ in δ(56Fe). These results show that—together with iron absorption efficiency—partitioning of iron between blood and iron storage tissues is an important determinant of blood iron isotopic patterns, which could make blood iron isotopic composition the first composite measure of iron metabolism in humans.


Iron isotopes Hemochromatosis Mass spectrometry Phlebotomy Storage iron 



The authors would like to thank R.F. Hurrell (ETH Zurich, Switzerland) for providing the laboratory infrastructure required for this research project and for his generous advice and support, F. von Blanckenburg (Geo-Forschungs-Zentrum, Potsdam, Germany) for valuable discussions, C. Zeder (ETH Zurich, Switzerland) for his technical assistance, and M.R. Eugster (ETH Zurich, Switzerland) for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation, grant no. 3200B0-105896.


  1. 1.
    Brittenham GM (1994) In: Brock HJ, Halliday JW, Pippard MJ, Powell LW (eds) Iron metabolism in health and disease. Saunders, London, pp 31–62Google Scholar
  2. 2.
    Andrews NC (2000) Annu Rev Genomics Hum Genet 1:75–98PubMedCrossRefGoogle Scholar
  3. 3.
    Barton JC, McDonnell SM, Adams PC, Brissot P, Powell LW, Edwards CQ, Cook JC, Kowdley KV (1998) Ann Intern Med 129:932–939PubMedGoogle Scholar
  4. 4.
    Walczyk T, von Blanckenburg F (2002) Science 295:2065–2066PubMedCrossRefGoogle Scholar
  5. 5.
    Walczyk T, von Blanckenburg F (2005) Int J Mass Spectrom 242:117–134CrossRefGoogle Scholar
  6. 6.
    Taylor PDP, Maeck R, Debievre P (1992) Int J Mass Spectrom 121:111–125CrossRefGoogle Scholar
  7. 7.
    Albarede F, Beard B (2004) Rev Mineral Geochem 55:113–152CrossRefGoogle Scholar
  8. 8.
    Schauble EA (2004) Rev Mineral Geochem 55:65–111CrossRefGoogle Scholar
  9. 9.
    Young ED, Galy A, Nagahara H (2002) Geochim Cosmochim Acta 66:1095–1104CrossRefGoogle Scholar
  10. 10.
    Guelke M, von Blanckenburg F (2007) Environ Sci Technol 41:1896–1901PubMedCrossRefGoogle Scholar
  11. 11.
    Hotz K, Augsburger H, Walczyk T (2001) J Anal At Spectrom. doi: 10.1039/c1030ja00195c
  12. 12.
    Johnson CM, Beard BL, Albarède F (2004) Rev Mineral Geochem 55:1–24CrossRefGoogle Scholar
  13. 13.
    Rayleigh L (1902) Philos Mag 4:521–537Google Scholar
  14. 14.
    Schoenberg R, von Blanckenburg F (2005) Int J Mass Spectrom 242:257–272CrossRefGoogle Scholar
  15. 15.
    Weyer S, Schwieters J (2003) Int J Mass Spectrom 226:355–368CrossRefGoogle Scholar
  16. 16.
    De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Pure Appl Chem 75:683–800CrossRefGoogle Scholar
  17. 17.
    Krayenbuehl PA, Walczyk T, Schoenberg R, von Blanckenburg F, Schulthess G (2005) Blood 105:3812–3816PubMedCrossRefGoogle Scholar
  18. 18.
    Beutler E (2006) Annu Rev Med 57:331–347PubMedCrossRefGoogle Scholar
  19. 19.
    Weintraub LR, Conrad ME, Crosby WH (1964) Blood 24:19–24PubMedGoogle Scholar
  20. 20.
    Ohno T, Shinohara A, Kohge I, Chiba M, Hirata T (2004) Anal Sci 20:617–621PubMedCrossRefGoogle Scholar
  21. 21.
    Haskins D, Stevens AR, Finch S, Finch CA (1952) J Clin Invest 31:543–547PubMedCrossRefGoogle Scholar
  22. 22.
    Cook JD, Flowers CH, Skikne BS (2003) Blood 101:3359–3364PubMedCrossRefGoogle Scholar
  23. 23.
    Cook JD (1999) Proc Nutr Soc 58:489–495PubMedCrossRefGoogle Scholar
  24. 24.
    Finch C (1994) Blood 84:1697–1702PubMedGoogle Scholar

Copyright information

© SBIC 2011

Authors and Affiliations

  • Karin Hotz
    • 1
  • Pierre-Alexandre Krayenbuehl
    • 2
  • Thomas Walczyk
    • 3
    Email author
  1. 1.Laboratory of Human Nutrition, Institute of Food, Nutrition and HealthETH ZurichZurichSwitzerland
  2. 2.Department of Internal MedicineUniversity Hospital ZurichZurichSwitzerland
  3. 3.Department of Chemistry (Science) and Department of Biochemistry (Medicine)National University of SingaporeSingaporeSingapore

Personalised recommendations