Skip to main content
Log in

Synthesis, characterization, and in vitro antitumor properties of gold(III) compounds with the traditional Chinese medicine (TCM) active ingredient liriodenine

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Liriodenine, an oxoaporphine alkaloid with anticancer activity isolated from Zanthoxylum nitidum (rutaceous anticancer traditional Chinese medicine), was selected as a bioactive ligand to react with HAuCl4 and NaAuCl4 to afford [LH][AuCl4] (1) and [AuCl3L] (2), respectively (where L is liriodenine). The structures of 1 and 2 were characterized by IR spectroscopy, electrospray ionization mass spectrometry, 1H-NMR spectroscopy, and elemental analysis. The single-crystal X-ray diffraction analysis of 1 revealed that it is an ionic compound consisting of protonated liriodenine cation [LH]+ and [AuCl4] anion. The spectroscopic analysis showed that 2 is a coordination compound, in which one liriodenine coordinates to gold via its 7-N donor. In aqueous solution, 1 is relatively stable, but 2 undergoes rapid hydrolysis. The in vitro cytotoxicity towards five human tumor cell lines shows that 1 and 2 manifest roughly similar biological behavior and appreciable antiproliferative properties, with IC50 values falling in the 2–16 μM range. The flow-cytometric analysis of 1 and 2 suggests that both compounds induced an S-phase arrest. Compounds 1 and 2 significantly poison topoisomerase I in vitro at low concentration (25 μM or less). DNA binding studies indicate that both 1 and 2 interact with DNA mainly via intercalation between the neighboring base pairs of the DNA double helix. Electrostatic interactions of 1 and 2 with the polyanionic DNA phosphate backbone may reinforce the intercalation because both 1 and 2 are composed of planar cationic species.

Graphical abstract

Two liriodenine (L) gold(III) compounds [LH][AuCl4] (1) and [AuCl3L] (2) were synthesized. The in vitro cytotoxicity towards five human tumor cell lines was tested and shows that 1 and 2 manifest appreciable antiproliferative properties, with IC50 values falling in the 2–16 μM range. Both 1 and 2 interact with DNA mainly via an intercalation mode, but electrostatic binding may exist. They both inhibit topoisomerase I activity at low concentration (25 μM or less).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jung Y, Lippard SJ (2007) Chem Rev 107:1387–1407

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Nature 222:385–386

    Article  PubMed  CAS  Google Scholar 

  3. Lovejoy KS, Lippard SJ (2009) Dalton Trans 10651–10659

  4. Hartinger CG, Nazarov AA, Ashraf SM, Dyson PJ, Keppler BK (2008) Curr Med Chem 15:2574–2591

    Article  PubMed  CAS  Google Scholar 

  5. Lovejoy KS, Todd RC, Zhang S, McCormick MS, D’Aquino JA, Reardon JT, Sancar A, Giacomini KM, Lippard SJ (2008) Proc Natl Acad Sci USA 105:8902–8907

    Article  PubMed  CAS  Google Scholar 

  6. Gibson D (2009) Dalton Trans 10681–1689

  7. Lakomska I, Kooijman H, Spek AL, Shen W-Z, Reedijk J (2009) Dalton Trans 10736–10741

  8. Miguel PJS, Roitzsch M, Yin L, Lax PM, Holland L, Krizanovic O, Lutterbeck M, Schürmann M, Fusch EC, Lippert B (2009) Dalton Trans 10774–10786

  9. Margiotta N, Ostuni R, Gandin V, Marzano C, Piccinonna S, Natile G (2009) Dalton Trans 10904–10913

  10. Rodriguez-Fernandez E, Alonso A, Almendral MJ, Perez-Andres M, Orfao A, Criado JJ (2009) Curr Med Chem 16:4314–4327

    Article  PubMed  CAS  Google Scholar 

  11. Montana AM, Batalla CT (2009) Curr Med Chem 16:2235–2260

    Article  PubMed  CAS  Google Scholar 

  12. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    Article  PubMed  CAS  Google Scholar 

  13. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  PubMed  CAS  Google Scholar 

  14. Reedijk J (1999) Chem Rev 99:2499–2510

    Article  PubMed  CAS  Google Scholar 

  15. Harper BW, Krause-Heuer AM, Grant MP, Manohar M, Garbutcheon-Singh KB, Aldrich-Wright J (2010) Chem Eur J 16:7064–7077

    PubMed  CAS  Google Scholar 

  16. Cossa G, Gatti L, Zunino F, Perego P (2009) Curr Med Chem 16:2355–2365

    Article  PubMed  CAS  Google Scholar 

  17. Gabano E, Ravera M, Osella D (2009) Curr Med Chem 16:4544–4580

    Article  PubMed  CAS  Google Scholar 

  18. Kelland L (2007) Nat Rev Cancer 7:573–584

    Article  PubMed  CAS  Google Scholar 

  19. Campone M, Rademaker-Lakhai JM, Bennouna J, Howell SB, Nowontnik DP, Beijnen JH, Schellens JHM (2007) Cancer Chemother Pharmacol 60:523–533

    Article  PubMed  CAS  Google Scholar 

  20. Sternberg CN, Whelan P, Hetherington J, Paluchowska B, Slee PHTJ, Vekemans K, Van Erps P, Theodore C, Koriakine O, Oliver T, Lebwohl D, Debois M, Zurlo A, Collette L (2005) Oncology 68:2–9

    Article  PubMed  CAS  Google Scholar 

  21. Rabik CA, Dolan ME (2007) Cancer Treat Rev 33:9–23

    Article  PubMed  CAS  Google Scholar 

  22. Milacic V, Fregona D, Dou QP (2008) Histol Histopathol 23:101–108

    PubMed  CAS  Google Scholar 

  23. Sun RW-Y, Che C-M (2009) Coord Chem Rev 253:1682–1691

    Article  CAS  Google Scholar 

  24. Milacic V, Dou QP (2009) Coord Chem Rev 253:1649–1660

    Article  PubMed  CAS  Google Scholar 

  25. Ott I (2009) Coord Chem Rev 253:1670–1681

    Article  CAS  Google Scholar 

  26. Bindoli A, Rigobello MP, Scutari G, Gabbiani C, Casini A, Messori L (2009) Coord Chem Rev 253:1692–1707

    Article  CAS  Google Scholar 

  27. Fricker SP (2010) Metallomics 2:366–377

    Article  PubMed  CAS  Google Scholar 

  28. Sun RW-Y, Li CK-L, Ma D-L, Yan JJ, Lok C-N, Leung C-H, Zhu N, Che C-M (2010) Chem Eur J 16:3097–3113

    Article  PubMed  CAS  Google Scholar 

  29. Yan J–J, Sun RW-Y, Wu P, Lin MCM, Chan AS-C, Che C-M (2010) Dalton Trans 39:7700–7705

    Google Scholar 

  30. Che C-M, Sun RW-Y, Yu WY, Ko CB, Zhu NY, Sun HZ (2003) Chem Commun 1718–1719

  31. Ronconi L, Marzano C, Zanello P, Corsini M, Miolo G, Macca C, Trevisan A, Fregona D (2006) J Med Chem 49:1648–1657

    Article  PubMed  CAS  Google Scholar 

  32. Ronconi L, Fregona DT (2009) Dalton Trans 10670–10680

  33. Ronconi L, Aldinucci D, Dou QP, Fregona D (2010) Anticancer Agents Med Chem 10:283–292

    PubMed  CAS  Google Scholar 

  34. Casini A, Cinellu MA, Minghetti G, Gabbiani C, Coronnello M, Mini E, Messori L (2006) J Med Chem 49:5524–5531

    Article  PubMed  CAS  Google Scholar 

  35. Cinellu MA, Maiore L, Manassero M, Casini A, Arca M, Fiebig H–H, Kelter G, Michelucci E, Pieraccini G, Gabbiani C, Messor L (2010) ACS Med Chem Lett 1:336–339

    Article  CAS  Google Scholar 

  36. Messori L, Marcon G, Cinellu MA, Coronnello M, Mini E, Gabbiani C, Orioli P (2004) Bioorg Med Chem 12:6039–6043

    Article  PubMed  CAS  Google Scholar 

  37. Coronnello M, Mini E, Caciagli B, Cinellu A, Bindoli A, Gabbiani C, Messori L (2005) J Med Chem 48:6761–6775

    Article  PubMed  CAS  Google Scholar 

  38. Yan J–J, Chow AL-K, Leung C-H, Sun RW-Y, Ma D-L, Che C-M (2010) Chem Commun 46:3893–3895

    Article  CAS  Google Scholar 

  39. Criado JJ, Manzano JL, Rodríguez-Fernández E (2003) J Inorg Biochem 96:311–320

    Article  PubMed  CAS  Google Scholar 

  40. Palanichamy K, Ontko AC (2006) Inorg Chim Acta 359:44–52

    Article  CAS  Google Scholar 

  41. Kouroulis KN, Hadjikakou SK, Kourkoumelis N, Kubicki M, Male L, Hursthouse M, Skoulika S, Metsios AK, Tyurin VY, Dolganov AV, Milaeva ER, Hadjiliadis N (2009) Dalton Trans 10446–10456

  42. Humphreys AS, Filipovska A, Berners-Price S, Koutsantonis GA, Skelton BW, White AH (2007) Dalton Trans 4943–4950

  43. Tu S, Sun RW-Y, Lin MC, Cui JT, Zou B, Gu Q, Kung HF, Che C-M, Wong BC (2009) Cancer 115:4459–4469

    Article  PubMed  CAS  Google Scholar 

  44. Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L (2010) Med Res Rev 30:550–580

    PubMed  CAS  Google Scholar 

  45. To KKW, Au-Yeung SCF, Ho Y-P (2006) Anticancer Drug 17:673–683

    Article  CAS  Google Scholar 

  46. Ho Y-P, To KKW, Au-Yeung SCF, Wang X, Lin G, Han X (2001) J Med Chem 44:2065–2068

    Article  PubMed  CAS  Google Scholar 

  47. Zinsmeister HD, Becker H, Eicher T (1991) Angew Chem Int Ed 30:130–147

    Article  Google Scholar 

  48. Wang L, Gou S, Chen Y, Liu Y (2005) Bioorg Med Chem Lett 15:3417–3422

    Article  PubMed  CAS  Google Scholar 

  49. Chen Z-F, Liang H (2010) Anticancer Agents Med Chem 10:412–423

    PubMed  CAS  Google Scholar 

  50. Chen Z-F, Tan M-X, Liu Y-C, Peng Y, Wang H–H, Liu H-G, Liang H (2011) J Inorg Biochem 105:308–316

    Google Scholar 

  51. Lan YH, Chang FR, Yu JH, Yang YL, Chang YL, Lee SJ, Wu YC (2003) J Nat Prod 66:487–490

    Article  PubMed  CAS  Google Scholar 

  52. de Lira GA, de Andrade LM, Florêncio KC, da Silva MS, Barbosa-Filho JM, da-Cunha EVL (2002) Fitoterapia 73:356–358

    Article  PubMed  Google Scholar 

  53. Lin CH, Chang GJ, Su MJ, Wu YC, Teng CM, Ko FN (1994) Br J Pharmacol 113:275–281

    PubMed  CAS  Google Scholar 

  54. Woo SH, Sun NJ, Cassady JM, Snapka RM (1999) Biochem Pharmacol 57:1141–1145

    Article  PubMed  CAS  Google Scholar 

  55. Wu YC, Duh CY, Wang SK, Chen KS, Yang TH (1999) J Nat Prod 53:1327–1331

    Article  Google Scholar 

  56. Chang HC, Chang FR, Wu YC, Lai YH (2004) Kaohsiung J Med Sci 20:365–371

    Article  PubMed  CAS  Google Scholar 

  57. Hsieh TJ, Liu TZ, Chern CL, Tsao DA, Lu FJ, Syu YH, Hsien PY, Hu HS, Chang TT, Chen CH (2005) Food Chem Toxicol 43:1117–1126

    Article  PubMed  CAS  Google Scholar 

  58. Chen Z-F, Liu Y-C, Liu L-M, Wang H-S, Qin S-H, Wang B-L, Bian H-D, Yang B, Fun H-K, Liu H-G, Liang H, Orvig C (2009) Dalton Trans 262–272

  59. Liu Y-C, Chen Z-F, Liu L-M, Peng Y, Hong X, Yang B Liu H-G, Liang H, Orvig C (2009) Dalton Trans 10813–10823

  60. Marmur J (1961) J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  61. Reichmann ME, Rice CA, Thomas CA, Doty P (1954) J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  62. Sheldrick GM (1997) SHELXTL-97, program for refinement of crystal structures. University of Göttingen, Germany

    Google Scholar 

  63. Sheldrick GM (1997) SHELXS-97, program for solution of crystal structures. University of Göttingen, Germany

    Google Scholar 

  64. Fini A, Maria PD, Uarnieri A, Varoli L (1987) J Pharm Sci 76:48–52

    Article  PubMed  CAS  Google Scholar 

  65. Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739–1753

    Article  PubMed  CAS  Google Scholar 

  66. Chen Z-F, Mao L, Liu L-M, Liu Y-C, Peng Y, Hong X, Wang H–H, Liu H-G, Liang H (2011) J Inorg Biochem 105:171–180

    Article  PubMed  CAS  Google Scholar 

  67. Jiang C-W, Chao H, Li H, Ji L-N (2003) J Inorg Biochem 93:247–255

    Article  PubMed  CAS  Google Scholar 

  68. Calamai P, Carotti S, Guerri A, Messori L, Mini E, Orioli P, Speroni GP (1997) J Inorg Biochem 66:103–109

    Article  PubMed  CAS  Google Scholar 

  69. Calamai P, Guerri A, Messori L, Orioli P, Speroni GP (1999) Inorg Chim Acta 285:309–312

    Article  CAS  Google Scholar 

  70. Mironov IV, Makotchenko EV (2009) J Solut Chem 38:725–737

    Article  CAS  Google Scholar 

  71. Casini A, Diawara MC, Scopelliti R, Zakeeruddin SM, Rratzel M, Dyson PJ (2010) Dalton Trans 39:2239–2245

    Article  PubMed  CAS  Google Scholar 

  72. Terenzi A, Barone G, Piccionello AP, Giorgi G, Guarcello A, Portanova P, Calvaruso G, Buscemi S, Vivona N, Pace A (2010) Dalton Trans 39:9140–9145

    Google Scholar 

  73. Jeong K-C, Ahn K-O, Yang C-H (2010) Mol Biosyst 6:1503–1509

    Article  PubMed  CAS  Google Scholar 

  74. Guo L-Y, Joo E-J, Son K-H, Jeon S-J, Jang S, Shin E-M, Zhou H-Y, Kim Y-S (2009) Arch Pharm Res 32:1385–1392

    Article  PubMed  CAS  Google Scholar 

  75. Barldi PG, Bovero A, Fruttarolo F, Preti D, Tbabrizi MA, Pavani MG, Romagboli R (2004) Med Res Rev 24:475–528

    Article  Google Scholar 

  76. Hsiang Y-H, Liu LF (1988) Cancer Res 48:1722–1726

    PubMed  CAS  Google Scholar 

  77. Zhang CX, Lippard SJ (2003) Curr Opin Chem Biol 7:481–489

    Article  PubMed  CAS  Google Scholar 

  78. Wu C-H, Wu D-H, Liu X, Guoyiqibayi G, Guo D–D, Lv G, Wang X-M, Yan H, Jiang H, Lu Z-H (2009) Inorg Chem 48:2352–2354

    Article  PubMed  CAS  Google Scholar 

  79. Ma D-L, Che C-M (2003) Chem Eur J 9:6133–6144

    Article  PubMed  CAS  Google Scholar 

  80. Li Z, Yang Q, Qian X (2005) Bioorg Med Chem 13:4864–4870

    Article  PubMed  CAS  Google Scholar 

  81. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Heidelberg, pp 278–283

  82. Vos R, Engelborghs Y (1994) Photochem Photobiol 60:24–32

    Article  PubMed  CAS  Google Scholar 

  83. Chao H, Mei W-J, Huang Q-W, Ji L-N (2002) J Inorg Biochem 92:165–170

    Article  PubMed  CAS  Google Scholar 

  84. Olmsted J III, Kearns DR (1977) Biochemistry 16:3647–3654

    Google Scholar 

  85. Bi S, Zhang H, Qiao C, Sun Y, Liu C (2008) Spectrochimica Acta A 69:123–129

    Article  Google Scholar 

  86. Rajput C, Rutkaite R, Swanson L, Haq I, Thomas JA (2006) Chem Eur J 12:4611–4619

    Article  PubMed  CAS  Google Scholar 

  87. Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB (1995) Science 270:1842–1844

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (nos. 2009CB526503 and 2010CB534911), the National Natural Science Foundation of China (no. 20861002), and the Natural Science Foundation of Guangxi Province (nos. 0991012Z, 0991003, and 2010GXNSFF013001). We also thank Yong Zhang for the crystal structure, Zijian Guo for valuable discussions, Jia-Xin Dong from Guangxi Normal University for potentiometric titration, and Pete Frischmann from the University of British Columbia for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Feng Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ZF., Liu, YC., Peng, Y. et al. Synthesis, characterization, and in vitro antitumor properties of gold(III) compounds with the traditional Chinese medicine (TCM) active ingredient liriodenine. J Biol Inorg Chem 17, 247–261 (2012). https://doi.org/10.1007/s00775-011-0846-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0846-z

Keywords

Navigation