JBIC Journal of Biological Inorganic Chemistry

, Volume 17, Issue 1, pp 97–106 | Cite as

Binding of ReO4 with an engineered MoO42−-binding protein: towards a new approach in radiopharmaceutical applications

Original Paper


Radiolabeled biomolecules are routinely used for clinical diagnostics. 99mTc is the most commonly used radioactive tracer in radiopharmaceuticals. 188Re and 186Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO4) ion as a new way to label proteins. We found that a molybdate (MoO42−)-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetry measurements, we determined the dissociation constant of ModA for ReO4 to be 541 nM and we solved a crystal structure of ModA with a bound ReO4. On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (Kd = 104 nM). High-resolution crystal structures of ModA (1.7 Å) and A11C/R153C mutant (2.0 Å) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond.


ModA Perrhenate Pertechnetate Disulfide bond Fluorescence quenching 

Supplementary material

775_2011_833_MOESM1_ESM.pdf (194 kb)
Supplementary material (PDF 193 kb)


  1. 1.
    Guhlke S, Beets AL, Oetjen K, Mirzadeh S, Biersack HJ, Knapp FF (2000) J Nucl Med 41:1271–1278PubMedGoogle Scholar
  2. 2.
    Knapp FF (1998) Cancer Biother Radiopharm 13:337–349PubMedCrossRefGoogle Scholar
  3. 3.
    Abram U, Alberto R (2006) J Braz Chem Soc 17:1486–1500CrossRefGoogle Scholar
  4. 4.
    Cantorias MV, Howell RC, Todaro L, Cyr JE, Berndorff D, Rogers RD, Francesconi LC (2007) Inorg Chem 46:7326–7340PubMedCrossRefGoogle Scholar
  5. 5.
    Garcia-Garayoa E, Schibli R, Schubiger PA (2007) Nucl Sci Technol 18:88–100CrossRefGoogle Scholar
  6. 6.
    Bartholoma M, Valliant J, Maresca KP, Babich J, Zubieta J (2009) Chem Commun 493–512Google Scholar
  7. 7.
    Garron JY, Moinereau M, Pasqualini R, Saccavini JC (1991) Int J Radiat Appl Instrum Part B Nucl Med Biol 18:695–703Google Scholar
  8. 8.
    Griffiths GL, Goldenberg DM, Knapp FF, Callahan AP, Chang CH, Hansen HJ (1991) Cancer Res 51:4594–4602PubMedGoogle Scholar
  9. 9.
    Childs RL, Hnatowich DJ (1985) J Nucl Med 26:293–299PubMedGoogle Scholar
  10. 10.
    George AJT, Jamar F, Tai MS, Heelan BT, Adams GP, McCartney JE, Houston LL, Weiner LM, Oppermann H, Peters AM, Huston JS (1995) Proc Natl Acad Sci USA 92:8358–8362PubMedCrossRefGoogle Scholar
  11. 11.
    Pietersz GA, Patrick MR, Chester KA (1998) J Nucl Med 39:47–56PubMedGoogle Scholar
  12. 12.
    Rhodes BA (1991) Nucl Med Biol 18:667–676Google Scholar
  13. 13.
    Dadachova E, Mirzadeh S (1997) Nucl Med Biol 24:605–608PubMedCrossRefGoogle Scholar
  14. 14.
    John E, Wilder S, Thakur ML (1994) Nucl Med Commun 15:24–28PubMedCrossRefGoogle Scholar
  15. 15.
    Maresca KP, Hillier SM, Femia FJ, Zimmerman CN, Levadala MK, Banerjee SR, Hicks J, Sundararajan C, Valliant J, Zubieta J, Eckelman WC, Joyal JL, Babich JW (2009) Bioconjug Chem 20:1625–1633PubMedCrossRefGoogle Scholar
  16. 16.
    Lim NC, Ewart CB, Bowen ML, Ferreira CL, Barta CA, Adam MJ, Orvig C (2008) Inorg Chem 47:1337–1345PubMedCrossRefGoogle Scholar
  17. 17.
    Baker HM, Baker CJ, Smith CA, Baker EN (2000) J Biol Inorg Chem 5:692–698PubMedCrossRefGoogle Scholar
  18. 18.
    Sun HZ, Li HY, Sadler PJ (1999) Chem Rev 99:2817–2842PubMedCrossRefGoogle Scholar
  19. 19.
    Vallabhajosula SR, Harwig JF, Siemsen JK, Wolf W (1980) J Nucl Med 21:650–656PubMedGoogle Scholar
  20. 20.
    Hu YL, Rech S, Gunsalus RP, Rees DC (1997) Nat Struct Biol 4:703–707PubMedCrossRefGoogle Scholar
  21. 21.
    Vazquez-Ibar JL, Weinglass AB, Kaback HR (2002) Proc Natl Acad Sci USA 99:3487–3492PubMedCrossRefGoogle Scholar
  22. 22.
    Sandros MG, Gao D, Gokdemir C, Benson DE (2005) Chem Commun 2832–2834Google Scholar
  23. 23.
    Hollenstein K, Frei DC, Locher KP (2007) Nature 446:213–216PubMedCrossRefGoogle Scholar
  24. 24.
    Luecke H, Quiocho FA (1990) Nature 347:402–406PubMedCrossRefGoogle Scholar
  25. 25.
    Pflugrath JW, Quiocho FA (1988) J Mol Biol 200:163–180PubMedCrossRefGoogle Scholar
  26. 26.
    Imperial J, Hadi M, Amy NK (1998) BBA Biomembr 1370:337–346CrossRefGoogle Scholar
  27. 27.
    Bevers LE, Hagedoorn PL, Krijger GC, Hagen WR (2006) J Bacteriol 188:6498–6505PubMedCrossRefGoogle Scholar
  28. 28.
    Hagen WR (2011) Coord Chem Rev 255:1117–1128CrossRefGoogle Scholar
  29. 29.
    Krebs B, Hasse KD (1976) Acta Crystallogr Sect B Struct Sci 32:1334–1337CrossRefGoogle Scholar
  30. 30.
    Rech S, Wolin C, Gunsalus RP (1996) J Biol Chem 271:2557–2562PubMedCrossRefGoogle Scholar
  31. 31.
    Hollenstein K, Comellas-Bigler M, Bevers LE, Feiters MC, Meyer-Klaucke W, Hagedoorn PL, Locher KP (2009) J Biol Inorg Chem 14:663–672PubMedCrossRefGoogle Scholar
  32. 32.
    Marvin JS, Hellinga HW (2001) Nat Struct Biol 8:795–798PubMedCrossRefGoogle Scholar
  33. 33.
    Klofutar C, Podobnik B, Krašovec F, Štular V (1969) Microchim Acta 57:758–763Google Scholar
  34. 34.
    Sakakura A, Katsukawa M, Ishihara K (2007) Angew Chem Int Ed 46:1423–1426CrossRefGoogle Scholar
  35. 35.
    Petrova T, Ginell S, Mitschler A, Kim Y, Lunin VY, Joachimiak G, Cousido-Siah A, Hazemann I, Podjarny A, Lazarski K, Joachimiak A (2010) Acta Crystallogr Sect D Biol Crystallogr 66:1075–1091CrossRefGoogle Scholar

Copyright information

© SBIC 2011

Authors and Affiliations

  • Baikuntha P. Aryal
    • 1
  • Pedro Brugarolas
    • 1
  • Chuan He
    • 1
  1. 1.Department of Chemistry, Institute for Biophysical DynamicsThe University of ChicagoChicagoUSA

Personalised recommendations