JBIC Journal of Biological Inorganic Chemistry

, Volume 16, Issue 8, pp 1177–1185 | Cite as

Ru binding to RNA following treatment with the antimetastatic prodrug NAMI-A in Saccharomyces cerevisiae and in vitro

Original Paper

Abstract

[ImH][trans-RuIIICl4(DMSO)(Im)] (where DMSO is dimethyl sulfoxide and Im is imidazole) (NAMI-A) is an antimetastatic prodrug currently in phase II clinical trials. The mechanisms of action of this and related Ru-based anticancer agents are not well understood, but several cellular targets have been suggested. Although Ru has been observed to bind to DNA following in vitro NAMI-A exposure, little is known about Ru–DNA interactions in vivo and even less is known about how this or related metallodrugs might influence cellular RNA. In this study, Ru accumulation in cellular RNA was measured following treatment of Saccharomyces cerevisiae with NAMI-A. Drug-dependent growth and cell viability indicate relatively high tolerance, with approximately 40% cell death occurring at 6 h for 450 μM NAMI-A. Significant dose-dependent accumulation of Ru in cellular RNA was observed by inductively coupled plasma mass spectrometry measurements on RNA extracted from yeast treated with NAMI-A. In vitro, binding of Ru species to drug-treated model DNA and RNA oligonucleotides at pH 6.0 and 7.4 was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the presence and absence of the reductant ascorbate. The extent of Ru–nucleotide interactions increases slightly with lower pH and significantly in the presence of ascorbate, with differences in observed species distribution. Taken together, these studies demonstrate the accumulation of aquated and reduced derivatives of NAMI-A on RNA in vitro and in cellulo, and enhanced binding with nucleic acid targets in a tumorlike acidic, reducing environment. To our knowledge, this is also the first study to characterize NAMI-A treatment of S. cerevisiae, a genetically tractable model organism.

Keywords

NAMI-A RNA DNA Anticancer drug Ruthenium 

Abbreviations

cfu

Colony-forming units

DMSO

Dimethy sulfoxide

ICP-MS

Inductively coupled plasma mass spectrometry

Im

Imidazole

MALDI

Matrix-assisted laser desorption/ionization

OD600

Optical density at 600 nm

NAMI

[Na][trans-RuIIICl4(DMSO)(Im)]

NAMI-A

[ImH][trans-RuIIICl4(DMSO)(Im)]

THAP

2′,4′,6′-Trihydroxyacetophenone

TOF

Time-of-flight

YEPD

Yeast extract–peptone–glucose

Notes

Acknowledgements

We thank Andy Ungerer for assistance with the ICP-MS experiments, the W. M. Keck Collaboratory for Plasma Spectrometry at Oregon State University, J. David Sumega for synthesizing and characterizing NAMI-A, and Laurie Graham for assistance with protocols and imaging. The Stevens laboratory at the University of Oregon is gratefully acknowledged for the use of a Carl Zeiss Axioplan 2 fluorescence microscope and for a gift of the BY4741 strain. This work was supported by a Willamette University Atkinson Grant (K.L.M.H.), the NIH (GM058096, V.J.D.), and the University of Oregon (V.J.D.).

Supplementary material

775_2011_806_MOESM1_ESM.pdf (510 kb)
Supplementary figures (PDF 509 kb)

References

  1. 1.
    Hannon MJ (2007) Pure Appl Chem 79:2243–2261CrossRefGoogle Scholar
  2. 2.
    Dyson PJ, Sava G (2006) Dalton Trans 1929–1933Google Scholar
  3. 3.
    Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JHM (2004) Clin Cancer Res 10:3717–3727PubMedCrossRefGoogle Scholar
  4. 4.
    Levina A, Mitra A, Lay PA (2009) Metallomics 1:458–470PubMedCrossRefGoogle Scholar
  5. 5.
    Kostova I (2006) Curr Med Chem 13:1085–1107PubMedCrossRefGoogle Scholar
  6. 6.
    Bergamo A, Gagliardi R, Scarcia V, Furlani A, Alessio E, Mestroni G, Sava G (1999) J Pharmacol Exp Ther 289:559–564PubMedGoogle Scholar
  7. 7.
    Sava G, Capozzi I, Bergamo A, Gagliardi R, Cocchietto M, Masiero L, Onisto M, Alessio E, Mestroni G, Garbisa S (1996) Int J Cancer 68:60–66PubMedCrossRefGoogle Scholar
  8. 8.
    Sava G, Bergamo A, Zorzet S, Gava B, Casarsa C, Cocchietto M, Furlani A, Scarcia V, Serli B, Iengo E, Alessio E, Mestroni G (2002) Eur J Cancer 38:427–435PubMedCrossRefGoogle Scholar
  9. 9.
    Ravera M, Baracco S, Cassino C, Zanello P, Osella D (2004) Dalton Trans 2347–2351Google Scholar
  10. 10.
    Gullino PM (1976) Adv Exp Biol Med 75:521–536Google Scholar
  11. 11.
    Richard DE, Berra E, Pouyssegur J (1999) Biochem Biophys Res Commun 266:718–722PubMedCrossRefGoogle Scholar
  12. 12.
    Gerweck LE, Vijayappa S, Kozin S (2006) Mol Cancer Ther 5:1275–1279PubMedCrossRefGoogle Scholar
  13. 13.
    Brabec V, Novakova O (2006) Drug Resist Update 9:111–122CrossRefGoogle Scholar
  14. 14.
    Pizarro AM, Sadler PJ (2009) Biochimie 91:1198–1211PubMedCrossRefGoogle Scholar
  15. 15.
    Pluim D, van Waardenburg RCAM, Beijnen JH, Schellens JHM (2004) Cancer Chemother Pharmacol 54:71–78PubMedCrossRefGoogle Scholar
  16. 16.
    Gallori E, Vettori C, Alessio E, Vilchez FG, Vilaplana R, Orioli P, Casini A, Messori L (2000) Arch Biochem Biophys 376:156–162PubMedCrossRefGoogle Scholar
  17. 17.
    Messori L, Casini A, Vullo D, Haroutiunian SG, Dalian EB, Orioli P (2000) Inorg Chim Acta 303:283–286CrossRefGoogle Scholar
  18. 18.
    Jung Y, Lippard SJ (2007) Chem Rev 107:1387–1407PubMedCrossRefGoogle Scholar
  19. 19.
    Bacac M, Hotze ACG, van der Schilden K, Haasnoot JG, Pacor S, Alessio E, Sava G, Reedijk J (2004) J Inorg Biochem 98:402–412PubMedCrossRefGoogle Scholar
  20. 20.
    Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Dalton Trans 1796–1802Google Scholar
  21. 21.
    Groessl M, Tsybin YO, Hartinger CG, Keppler BK, Dyson PJ (2010) J Biol Inorg Chem 15:677–688PubMedCrossRefGoogle Scholar
  22. 22.
    Malina J, Novakova O, Keppler BK, Alessio E, Brabec V (2001) J Biol Inorg Chem 6:435–445PubMedCrossRefGoogle Scholar
  23. 23.
    Mattick JS (2004) Nat Rev Genet 5:316–323PubMedCrossRefGoogle Scholar
  24. 24.
    Kong QM, Lin CLG (2010) Cell Mol Life Sci 67:1817–1829PubMedCrossRefGoogle Scholar
  25. 25.
    Olmo N, Turnay J, González de Buitrago G, López de Silanes I, Gavilanes JG, Lizarbe MA (2001) Eur J Biochem 268:2113–2123PubMedCrossRefGoogle Scholar
  26. 26.
    Jetzt AE, Cheng JS, Tumer NE, Cohick WS (2009) Int J Biochem Cell B 41:2503–2510CrossRefGoogle Scholar
  27. 27.
    Mroczek S, Kufel J (2008) Nucleic Acids Res 36:2874–2888PubMedCrossRefGoogle Scholar
  28. 28.
    Mei Y, Yong J, Liu H, Shi Y, Meinkoth J, Dreyfuss G, Yang X (2010) Mol Cell 37:668–678PubMedCrossRefGoogle Scholar
  29. 29.
    Akaboshi M, Kawai K, Maki H, Akuta K, Ujeno Y, Miyahara T (1992) Jpn J Cancer Res 83:522–526PubMedCrossRefGoogle Scholar
  30. 30.
    Schmittgen TD, Ju J-F, Danenberg KD, Danenberg PV (2003) Int J Oncol 23:785–789PubMedGoogle Scholar
  31. 31.
    Heminger KA, Hartson SD, Rogers J, Matts RL (1997) Arch Biochem Biophys 344:200–207PubMedCrossRefGoogle Scholar
  32. 32.
    Menacho-Marquez M, Murguia JR (2007) Clin Trans Oncol 9:221–228CrossRefGoogle Scholar
  33. 33.
    McCarthy JEG (1998) Microbiol Mol Biol Rev 62:1492–1553PubMedGoogle Scholar
  34. 34.
    Phizicky EM, Hopper AK (2010) Genes Dev 24:1832–1860PubMedCrossRefGoogle Scholar
  35. 35.
    Barr MM (2003) Physiol Genomics 13:15–24PubMedGoogle Scholar
  36. 36.
    Alessio E, Balducci G, Calligaris M, Costa G, Attia WM, Mestroni G (1991) Inorg Chem 30:609–618CrossRefGoogle Scholar
  37. 37.
    Witkowsky L (2006) Senior thesis. Willamette UniversityGoogle Scholar
  38. 38.
    Tyson CB, Lord PG, Wheals AE (1979) J Bacteriol 138:92–98PubMedGoogle Scholar
  39. 39.
    Chapman EG, DeRose VJ (2010) J Am Chem Soc 132:1946–1952PubMedCrossRefGoogle Scholar
  40. 40.
    Ragas JA, Simmons TA, Limbach PA (2000) Analyst 125:575–581PubMedCrossRefGoogle Scholar
  41. 41.
    Sauer S (2007) J Biochem Biophys Methods 70:311–318PubMedCrossRefGoogle Scholar
  42. 42.
    Christian NP, Reilly JP, Mokler VR, Wincott FE, Ellington AD (2001) J Am Soc Mass Spectrom 12:744–753PubMedCrossRefGoogle Scholar
  43. 43.
    National Institute of Standards and Technology (2010) Physical measurement laboratory: basic atomic spectroscopic data. http://physics.nist.gov/PhysRefData/Handbook/Tables/rutheniumtable1.htm. Accessed 5 Jan 2011
  44. 44.
    Ang WH, Daldini E, Scolaro C, Scopelliti R, Juillerat-Jeannerat L, Dyson PJ (2006) Inorg Chem 45:9006–9013PubMedCrossRefGoogle Scholar
  45. 45.
    Bergamo A, Messori L, Piccoli F, Cocchietto M, Sava G (2003) Invest New Drugs 21:401–411PubMedCrossRefGoogle Scholar
  46. 46.
    Warner JR (1999) Trends Biochem Sci 24:437–440PubMedCrossRefGoogle Scholar
  47. 47.
    Hinnebusch AG (2009) Genes Dev 23:891–895PubMedCrossRefGoogle Scholar
  48. 48.
    Horn HF, Vousden KH (2007) Oncogene 26:1306–1316PubMedCrossRefGoogle Scholar
  49. 49.
    Brindell M, Stawoska I, Supel J, Skoczowski A, Stochel G, van Eldik R (2008) J Biol Inorg Chem 13:909–918PubMedCrossRefGoogle Scholar
  50. 50.
    Brindell M, Piotrowska D, Shoukry AA, Stochel G, van Eldik R (2007) J Biol Inorg Chem 12:809–818PubMedCrossRefGoogle Scholar
  51. 51.
    Calligaris M, Carugo O (1996) Coord Chem Rev 153:83–154CrossRefGoogle Scholar

Copyright information

© SBIC 2011

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of OregonEugeneUSA
  2. 2.Department of ChemistryWillamette UniversitySalemUSA

Personalised recommendations