Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 16, Issue 7, pp 1079–1086 | Cite as

Redox biochemistry of mammalian metallothioneins

  • Wolfgang Maret
Minireview

Abstract

Metallothionein (MT) is a generic name for certain families of structurally rather variable metal-binding proteins. While purely chemical or biological approaches failed to establish a single physiologic function for MTs in any species, a combination of chemical and biological approaches and recent progress in defining the low but significant concentrations of cytosolic free zinc(II) ions have demonstrated that mammalian MTs function in cellular zinc metabolism in specific ways that differ from conventional knowledge about any other metalloprotein. Their thiolate coordination environments make MTs redox-active zinc proteins that exist in different molecular states depending on the availability of cellular zinc and the redox poise. The zinc affinities of MTs cover a range of physiologic zinc(II) ion concentrations and are modulated. Oxidative conditions make more zinc available, while reductive conditions make less zinc available. MTs move from the cytosol to cellular compartments, are secreted from cells, and are taken up by cells. They provide cellular zinc ions in a chemically available form and participate in cellular metal muffling: the combination of physiologic buffering in the steady state and the cellular redistribution and compartmentalization of transiently elevated zinc(II) ion concentrations in the pre-steady state. Cumulative evidence indicates that MTs primarily have a redox-dependent function in zinc metabolism, rather than a zinc-dependent function in redox metabolism.

Keywords

Metallothionein Thionein Thiol reactivity Oxidoreduction Zinc(II) ions 

Abbreviations

ABD-F

7-Fluorobenz-2-oxa-1,3-diazole-4-sulfonamide

MT

Metallothionein

MTF-1

Metal response element (MRE)-binding transcription factor-1

PTP-1B

Protein tyrosine phosphatase-1B

SDH

Sorbitol dehydrogenase

T

Thionein

References

  1. 1.
    Maret W (2010) Angew Chem Int Ed 49:2–3CrossRefGoogle Scholar
  2. 2.
    Maret W (2000) J Nutr 130:1455S–1458SPubMedGoogle Scholar
  3. 3.
    Bell SG, Vallee BL (2009) ChemBioChem 10:55–62PubMedCrossRefGoogle Scholar
  4. 4.
    Margoshes M, Vallee BL (1957) J Am Chem Soc 79:4813CrossRefGoogle Scholar
  5. 5.
    Kägi JHR, Vallee BL (1960) J Biol Chem 235:3460–3465PubMedGoogle Scholar
  6. 6.
    Blindauer CA, Leszczyszyn OI (2010) Nat Prod Rev 27:720–741CrossRefGoogle Scholar
  7. 7.
    Luther GW III, Theberge SM, Rickard DT (1999) Geochim Cosmochim Acta 63:3159–3169CrossRefGoogle Scholar
  8. 8.
    Zhang H, Rustad JR, Banfield JF (2007) J Phys Chem A 111:5008–5014PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang X, Tamaru H, Khan SI, Horton JR, Keefe LJ, Selker EU, Cheng X (2002) Cell 111:117–127PubMedCrossRefGoogle Scholar
  10. 10.
    Min J, Zhang X, Cheng X, Grewal SI, Xu RM (2002) Nat Struct Biol 9:828–832PubMedGoogle Scholar
  11. 11.
    Li Y, Maret W (2008) JAAS 23:1055–1062Google Scholar
  12. 12.
    Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991) Neuron 7:337–347PubMedCrossRefGoogle Scholar
  13. 13.
    Meloni G, Faller P, Vasak M (2007) J Biol Chem 287:16068–16078CrossRefGoogle Scholar
  14. 14.
    Arseniev A, Schultze P, Wörgötter E, Braun W, Wagner G, Vasak M, Kägi JHR, Wüthrich K (1988) J Mol Biol 201:637–657PubMedCrossRefGoogle Scholar
  15. 15.
    Robbins AH, McRee DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD (1991) J Mol Biol 221:1269–1293PubMedGoogle Scholar
  16. 16.
    Dolderer B, Echner H, Beck A, Hartmann HJ, Weser U, Luchinat C, Del Bianco C (2007) FEBS J 274:2349–2362PubMedCrossRefGoogle Scholar
  17. 17.
    Kelly EJ, Palmiter RD (1996) Nat Genet 13:219–222PubMedCrossRefGoogle Scholar
  18. 18.
    Otvos JD, Armitage IM (1979) J Am Chem Soc 101:7734–7736CrossRefGoogle Scholar
  19. 19.
    Vasak M, Kägi JHR (1983) Metal Ions Biol Syst 15:213–273Google Scholar
  20. 20.
    Krezel A, Maret W (2007) J Am Chem Soc 129:10911–10921PubMedCrossRefGoogle Scholar
  21. 21.
    Maret W, Vallee BL (1998) Proc Natl Acad Sci USA 95:3478–3482PubMedCrossRefGoogle Scholar
  22. 22.
    Maret W (2004) Biochemistry 43:3301–3309PubMedCrossRefGoogle Scholar
  23. 23.
    Maret W (2006) Antioxid Redox Signal 8:1419–1441PubMedCrossRefGoogle Scholar
  24. 24.
    Krezel A, Hao Q, Maret W (2007) Arch Biochem Biophys 463:188–200PubMedCrossRefGoogle Scholar
  25. 25.
    Wouters MA, Fan SW, Haworth NL (2010) Antioxid Redox Signal 12:53–91PubMedCrossRefGoogle Scholar
  26. 26.
    Maret W (1994) Proc Natl Acad Sci USA 91:237–241PubMedCrossRefGoogle Scholar
  27. 27.
    Maret W (1995) Neurochem Int 27:111–117PubMedCrossRefGoogle Scholar
  28. 28.
    Jacob C, Maret W, Vallee BL (1999) Proc Natl Acad Sci USA 96:1910–1914PubMedCrossRefGoogle Scholar
  29. 29.
    Chen Y, Maret W (2001) Antioxid Redox Signal 3:651–656PubMedCrossRefGoogle Scholar
  30. 30.
    Kröncke KD, Fehsel K, Schmidt T, Zenke FT, Dasting I, Wesener JR, Bettermann H, Breunig KD, Kolb-Bachofen V (1994) Biochem Biophys Res Commun 200:1105–1110PubMedCrossRefGoogle Scholar
  31. 31.
    Chen Y, Irie Y, Keung WM, Maret W (2002) Biochemistry 41:8360–8367PubMedCrossRefGoogle Scholar
  32. 32.
    Hao Q, Maret W (2006) FEBS J 273:4300–4310PubMedCrossRefGoogle Scholar
  33. 33.
    Miyazaki I, Asunama M, Hozumi H, Miyoshi K, Sogawa N (2007) FEBS Lett 581:5003–5008PubMedCrossRefGoogle Scholar
  34. 34.
    Gauthier MA, Eibl JL, Crispo JA, Ross JM (2008) Neurotox Res 14:317–328PubMedCrossRefGoogle Scholar
  35. 35.
    Haase H, Maret W (2004) Anal Biochem 333:19–26PubMedCrossRefGoogle Scholar
  36. 36.
    Sagher D, Brunell D, Hejtmancik JF, Kantorow M, Brot N, Weissbach H (2006) Proc Natl Acad Sci USA 103:8656–8661PubMedCrossRefGoogle Scholar
  37. 37.
    Haase H, Maret W (2008) Electrophoresis 29:4169–4176PubMedCrossRefGoogle Scholar
  38. 38.
    Aras MA, Hara H, Hartnett KA, Kandler K, Aizenman E (2009) J Neurochem 110:106–117PubMedCrossRefGoogle Scholar
  39. 39.
    Maret W, Heffron G, Hill HAO, Djuricic D, Jiang L-J, Vallee BL (2002) Biochemistry 41:1689–1694PubMedCrossRefGoogle Scholar
  40. 40.
    Villarreal L, Tío L, Atrian S, Capdevila M (2005) Arch Biochem Biophys 435:331–335PubMedCrossRefGoogle Scholar
  41. 41.
    Robbins AH, Stout CD (1991) Meth Enzymol 205:485–502PubMedCrossRefGoogle Scholar
  42. 42.
    Brouwer M, Brouwer TH, Cashon RE (1993) Biochem J 294:219–225PubMedGoogle Scholar
  43. 43.
    Jiang L-J, Maret W, Vallee BL (1998) Proc Natl Acad Sci USA 95:9146–9149PubMedCrossRefGoogle Scholar
  44. 44.
    Sutherland DEK, Stillman MJ (2011) Metallomics 3:444–463PubMedCrossRefGoogle Scholar
  45. 45.
    Capdevila M, Domènech J, Pagani A, Tío L, Villarreal L, Atrian S (2005) Angew Chem Int Ed 44:4618–4622CrossRefGoogle Scholar
  46. 46.
    Yang Y, Maret W, Vallee BL (2001) Proc Natl Acad Sci USA 98:5556–5559PubMedCrossRefGoogle Scholar
  47. 47.
    Kägi JHR (1993) In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Birkhäuser, Basel, pp 29–55Google Scholar
  48. 48.
    Krezel A, Maret W (2007) Biochem J 402:551–558PubMedCrossRefGoogle Scholar
  49. 49.
    Feng W, Benz FW, Cai J, Pierce WM, Kang YJ (2006) J Biol Chem 281:681–687PubMedCrossRefGoogle Scholar
  50. 50.
    Krezel A, Maret W (2006) J Biol Inorg Chem 11:1049–1062PubMedCrossRefGoogle Scholar
  51. 51.
    Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR (2008) Am J Physiol Cell Physiol 294:C726–C742PubMedCrossRefGoogle Scholar
  52. 52.
    Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009) Nat Methods 6:737–740PubMedCrossRefGoogle Scholar
  53. 53.
    Li Y, Maret W (2009) Exp Cell Res 315:2463–2470PubMedCrossRefGoogle Scholar
  54. 54.
    Thomas RC, Coles JA, Deitmer JW (1991) Nature 350:564PubMedCrossRefGoogle Scholar
  55. 55.
    Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Metallomics 2:306–317PubMedCrossRefGoogle Scholar
  56. 56.
    Ye B, Maret W, Vallee BL (2001) Proc Natl Acad Sci USA 98:2317–2322PubMedCrossRefGoogle Scholar
  57. 57.
    Hao Q, Hong S-H, Maret W (2007) J Cell Physiol 210:428–435PubMedCrossRefGoogle Scholar
  58. 58.
    Nartey NO, Banerjee D, Cherian MG (1987) Pathology 19:233–238PubMedCrossRefGoogle Scholar
  59. 59.
    Moltedo O, Verde C, Capasso A, Parisi E, Remondelli P, Bonatti S, Alvarez-Hernandez X, Glass J, Alvino CG, Leone A (2000) J Biol Chem 275:31819–31825PubMedCrossRefGoogle Scholar
  60. 60.
    Andreini C, Banci L, Bertini I, Rosato A (2006) J Proteome Res 5:196–201PubMedCrossRefGoogle Scholar
  61. 61.
    Chen Y, Maret W (2001) Eur J Biochem 268:3346–3353PubMedCrossRefGoogle Scholar
  62. 62.
    Maret W, Jacob C, Vallee BL, Fischer EH (1999) Proc Natl Acad Sci USA 96:1936–1940PubMedCrossRefGoogle Scholar
  63. 63.
    Croix CM, Wasserloos KJ, Dineley KE, Reynolds IJ, Levitan ES, Pitt BR (2002) Am J Physiol Lung Cell Mol Physiol 282:L185–L192Google Scholar
  64. 64.
    Spahl DU, Berendji-Grün D, Suschek CV, Kolb-Bachofen V, Kröncke KD (2003) Proc Natl Acad Sci USA 100:13952–13957PubMedCrossRefGoogle Scholar
  65. 65.
    Haase H, Maret W (2003) Exp Cell Res 291:289–298PubMedCrossRefGoogle Scholar
  66. 66.
    Krezel A, Maret W (2008) J Biol Inorg Chem 13:401–409PubMedCrossRefGoogle Scholar
  67. 67.
    Maret W (2009) J Chromatogr B 877:3378–3383Google Scholar
  68. 68.
    Michalska AE, Choo KHE (1993) Proc Natl Acad Sci USA 90:8089–8092CrossRefGoogle Scholar
  69. 69.
    Master BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD (1994) Proc Natl Acad Sci USA 91:584–588CrossRefGoogle Scholar
  70. 70.
    Kelly EJ, Quaife CJ, Froelick GJ, Palmiter RD (1996) J Nutr 126:1782–1790PubMedGoogle Scholar
  71. 71.
    Beattie JH, Wood AM, Newman AM, Bremner I, Choo KHA, Michalska A, Duncan JS, Trayhurn P (1998) Proc Natl Acad Sci USA 95:358–363PubMedCrossRefGoogle Scholar
  72. 72.
    Andrews GK, Geiser J (1999) J Nutr 129:1643–1648PubMedGoogle Scholar
  73. 73.
    Rofe AM, Philcox JC, Sturkenbaum M, Coyle P (1999) In: Klaassen C (ed) Metallothionein IV. Birkhäuser, Basel, pp 309–313Google Scholar
  74. 74.
    Tamano H, Igasaki E, Enomoto S, Oku N, Itoh N, Kumra T, Tanaka K, Takeda A (2000) Biochem Biophys Res Commun 270:1140–1143PubMedCrossRefGoogle Scholar
  75. 75.
    Crowthers KC, Kline V, Giardina C, Lynes MA (2000) Toxicol Appl Pharmacol 166:161–172PubMedCrossRefGoogle Scholar
  76. 76.
    Mita M, Imura N, Kumazawa Y, Himeno S (2002) Microbiol Immunol 46:101–107PubMedGoogle Scholar
  77. 77.
    Kanekiyo M, Itoh N, Kawasaki A, Matsuyama A, Matsuda K, Nakanishi T, Tanaka K (2002) Biochem J 361:363–369PubMedCrossRefGoogle Scholar
  78. 78.
    Rofe AM, Philcox JC, Coyle P (1996) Biochem J 314:793–797PubMedGoogle Scholar
  79. 79.
    Lazo JS, Kondo Y, Dellapiazza D, Michalska AE, Choo KHE, Pitt BR (1995) J Biol Chem 270:5506–5510PubMedCrossRefGoogle Scholar
  80. 80.
    Wolpert L (1994) Science 266:571–572PubMedCrossRefGoogle Scholar
  81. 81.
    Karin M (1985) Cell 41:9–10PubMedCrossRefGoogle Scholar
  82. 82.
    Maret W, Krezel A (2007) Mol Med 13:371–375PubMedCrossRefGoogle Scholar
  83. 83.
    Kägi JHR (1991) Meth Enzymol 205:613–626PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2011

Authors and Affiliations

  1. 1.King’s College London, Metal Metabolism Group, Diabetes and Nutritional Sciences Division, School of MedicineLondonUK
  2. 2.Department of Biochemistry, School of Biomedical and Health SciencesKing’s College LondonLondonUK

Personalised recommendations