JBIC Journal of Biological Inorganic Chemistry

, Volume 16, Issue 7, pp 977–989 | Cite as

Metallothionein protein evolution: a miniassay



Metallothionein (MT) evolution is one of the most obscure yet fascinating aspects of the study of these atypical metal-binding peptides. The different members of the extremely heterogeneous MT protein superfamily probably evolved through a web of duplication, functional differentiation, and/or convergence events leading to the current scenario, which is particularly hard to interpret in terms of molecular evolution. Difficulties in drawing straight evolutionary relationships are reflected in the lack of definite MT classification criteria. Presently, MTs are categorized either according to a pure taxonomic clustering or depending on their metal binding preferences and specificities. Extremely well documented MT revisions were recently published. But beyond classic approaches, this review of MT protein evolution will bring together new aspects that have seldom been discussed before. Hence, the emergence of life on our planet, since metal ion utilization is accepted to be at the root of the emergence of living organisms, and global trends that underlie structural and functional MT diversification, will be presented. Major efforts are currently being devoted to identifying rules for function-constrained MT evolution that may be applied to different groups of organisms.


Bacterial metallothionein Copper thionein Eukaryotic metallothionein Metallothionein Molecular evolution 



Billion years ago


Horse liver metallothionein




  1. 1.
    Sigel A, Sigel H, Sigel RKO (eds) (2009) Metal ions in life sciences 5: metallothioneins and related chelators. Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 2.
    Williams RJP (2010) J Biol Inorg Chem 15:1175–1176CrossRefGoogle Scholar
  3. 3.
    Palmiter RD (1998) Proc Natl Acad Sci USA 95:8428–8430PubMedCrossRefGoogle Scholar
  4. 4.
    Margoshes M, Vallee BL (1957) J Am Chem Soc 79:4813CrossRefGoogle Scholar
  5. 5.
    Wolfe KH, Shields DC (1997) Nature 387:708–713PubMedCrossRefGoogle Scholar
  6. 6.
    Lundin LG (1999) Semin Cell Dev Biol 10:523–530PubMedCrossRefGoogle Scholar
  7. 7.
    Holland PW, Garcia-Fernandez J, Williams NA, Sidow A (1994) Dev Suppl 43:125–133Google Scholar
  8. 8.
    Gonzalez-Duarte P (2003) Compr Coord Chem II 8:213–228Google Scholar
  9. 9.
    Blindauer CA, Leszczyszyn OI (2010) Nat Prod Rep 27:720–741PubMedCrossRefGoogle Scholar
  10. 10.
    Palacios O, Pagani A, Perez-Rafael S, Egg M, Höckner M, Brandstätter A, Capdevila M, Atrian S, Dallinger R (2011) BMC Biol 9:4PubMedCrossRefGoogle Scholar
  11. 11.
    Valls M, Bofill R, Gonzalez-Duarte R, Gonzalez-Duarte P, Capdevila M, Atrian S (2001) J Biol Chem 276:32835–32843PubMedCrossRefGoogle Scholar
  12. 12.
    Bofill R, Capdevila M, Atrian S (2009) Metallomics 1:229–234PubMedCrossRefGoogle Scholar
  13. 13.
    Williams RJP (2002) J Inorg Biochem 88:241–250PubMedCrossRefGoogle Scholar
  14. 14.
    Mulkidjanian AY, Galperin MY (2010) Proc Natl Acad Sci USA 107:E138CrossRefGoogle Scholar
  15. 15.
    Dupont C, Butcher A, Valas RE, Bourne PE, Caetano-Anolles G (2010) Proc Natl Acad Sci USA 107:10567–10572PubMedCrossRefGoogle Scholar
  16. 16.
    Mulkidjanian AY (2009) Biol Direct 4:26PubMedCrossRefGoogle Scholar
  17. 17.
    Mulkidjanian AY, Galperin MY (2009) Biol Direct 4:27PubMedCrossRefGoogle Scholar
  18. 18.
    Abolmaali B, Taylor HV, Weser U (1998) Struct Bond 91:91–190CrossRefGoogle Scholar
  19. 19.
    Bertini I, Rosato A (2003) Proc Natl Acad Sci USA 100:3601–3604PubMedCrossRefGoogle Scholar
  20. 20.
    Decaria L, Bertini I, Williams RJP (2010) Metallomics 2:706–709PubMedCrossRefGoogle Scholar
  21. 21.
    Decaria L, Bertini I, Williams RJP (2011) Metallomics 3:56–60PubMedCrossRefGoogle Scholar
  22. 22.
    Blair Hedges S (2002) Nat Rev Genet 3:838–849PubMedCrossRefGoogle Scholar
  23. 23.
    Olafson RW, McCubbin WD, Kay CM (1988) Biochem J 251:691–699PubMedGoogle Scholar
  24. 24.
    Cook WJ, Kar SR, Taylor KB, Hall LM (1998) J Mol Biol 275:337–346PubMedCrossRefGoogle Scholar
  25. 25.
    Blindauer CA, Harrison MD, Parkinson JA, Robinson AK, Cavet JS, Robinson NJ, Sadler PJ (2001) Proc Natl Acad Sci USA 98:9593–9598PubMedCrossRefGoogle Scholar
  26. 26.
    Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Mol Microbiol 45:1421–1432PubMedCrossRefGoogle Scholar
  27. 27.
    Blindauer CA (2009) Met Ions Life Sci 5:51–81CrossRefGoogle Scholar
  28. 28.
    Leszczyszyn OI, White CRJ, Blindauer CA (2010) Mol Biosyst 6:1592–1603PubMedCrossRefGoogle Scholar
  29. 29.
    Robinson NJ (2008) Nat Chem Biol 4:582–583PubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt A, Hagen M, Schütze E, Schmidt A, Kothe E (2010) J Basic Microbiol 50:1–8CrossRefGoogle Scholar
  31. 31.
    Gold B, Deng H, Bryk R, Vargas D, Eliezer D, Roberts J, Jiang X, Nathan C (2008) Nat Chem Biol 4:609–616PubMedCrossRefGoogle Scholar
  32. 32.
    Blindauer CA, Leszczyszyn OI (2010) Nat Prod Rep 27:720–741PubMedCrossRefGoogle Scholar
  33. 33.
    Morris CA, Nicolaus B, Harwood JL, Kille P, Sampson V (1999) Biochem J 338:553–560PubMedCrossRefGoogle Scholar
  34. 34.
    Diaz S, Amaro F, Rico D, Campos V, Benitez L et al (2007) PLoS ONE 2(3):e291PubMedCrossRefGoogle Scholar
  35. 35.
    Dolderer B, Hartmann H-J, Weser U (2009) Met Ions Life Sci 5:83–102CrossRefGoogle Scholar
  36. 36.
    Nemer M, Wilkinson DG, Travaglini EC, Sternberg EJ, Butt TR (1985) Proc Natl Acad Sci USA 82:4992–4994PubMedCrossRefGoogle Scholar
  37. 37.
    Pagani A, Villarreal L, Capdevila M, Atrian S (2007) Mol Microbiol 63:256–269PubMedCrossRefGoogle Scholar
  38. 38.
    Borrelly GPM, Harrison MD, Robinson AK, Cox SG, Robinson NJ, Whitehall SK (2002) J Biol Chem 277:30394–30400PubMedCrossRefGoogle Scholar
  39. 39.
    Blindauer CA (2008) J Inorg Biochem 102:507–521PubMedCrossRefGoogle Scholar
  40. 40.
    Villarreal L, Tio L, Capdevila M, Atrian S (2006) FEBS J 273:523–535PubMedCrossRefGoogle Scholar
  41. 41.
    Cobbett C, Goldsbrough PB (2002) Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  42. 42.
    Devez A, Achterberg E, Gledhill M (2009) Met Ions Life Sci 5:441–481CrossRefGoogle Scholar
  43. 43.
    Freisinger E (2009) Met Ions Life Sci 5:107–154CrossRefGoogle Scholar
  44. 44.
    Freisinger E (2010) Chimia 64:217–224PubMedCrossRefGoogle Scholar
  45. 45.
    Stürzenbaum SR (2009) Met Ions Life Sci 5:183–197CrossRefGoogle Scholar
  46. 46.
    Vergani L (2009) Met Ions Life Sci 5:199–238CrossRefGoogle Scholar
  47. 47.
    Bofill R, Orihuela R, Romagosa M, Domenech J, Atrian S, Capdevila M (2009) FEBS J 276:7040–7056PubMedCrossRefGoogle Scholar
  48. 48.
    Valls M, Bofill R, Gonzalez-Duarte R, Gonzalez-Duarte P, Capdevila M, Atrian S (2001) J Biol Chem 276:32835–32843PubMedCrossRefGoogle Scholar
  49. 49.
    Atrian S (2009) Met Ions Life Sci 5:155–182CrossRefGoogle Scholar
  50. 50.
    Domenech J, Palacios O, Villarreal L, Gonzalez-Duarte P, Capdevila M, Atrian S (2003) FEBS Lett 533:72–78PubMedCrossRefGoogle Scholar
  51. 51.
    Hensbergen PJ, Donker MH, van Velzen MJ, Roelofs D, van der Schors RC, Hunziker PE, van Straalen NM (1999) Eur J Biochem 259:197–203PubMedCrossRefGoogle Scholar
  52. 52.
    Riek R, Precheur B, Wang YY, Mackay EA, Wider G, Güntert P, Liu AZ, Kägi JHR, Wüthrich K (1999) J Mol Biol 291:417–428PubMedCrossRefGoogle Scholar
  53. 53.
    Franchi N, Boldrin F, Ballarin L, Piccinni E (2010) J Exp Zool A 315:90–100Google Scholar
  54. 54.
    Hidalgo J, Chung R, Penkowa M, Vasak M (2009) Met Ions Life Sci 5:279–318CrossRefGoogle Scholar

Copyright information

© SBIC 2011

Authors and Affiliations

  1. 1.Departament de Química, Facultat de CiènciesUniversitat Autònoma de BarcelonaCerdanyola del Vallès (Barcelona)Spain
  2. 2.Departament de Genètica, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations