JBIC Journal of Biological Inorganic Chemistry

, Volume 16, Issue 6, pp 961–972 | Cite as

Antidiabetic vanadium compound and membrane interfaces: interface-facilitated metal complex hydrolysis

Original Paper


The interactions of metabolites of the antidiabetic vanadium-containing drug bis(maltolato)oxovanadium(IV) (BMOV) with lipid interface model systems were investigated and the results were used to describe a potentially novel mechanism by which these compounds initiate membrane-receptor-mediated signal transduction. Specifically, spectroscopic studies probed the BMOV oxidation and hydrolysis product interaction with interfaces created from cetyltrimethylammonium bromide (CTAB) which mimics the positively charged head group on phosphatidylcholine. 1H and 51V NMR spectroscopies were used to determine the location of the dioxobis(maltolato)oxovanadate(V) and the maltol ligand in micelles and reverse micelles by measuring changes in the chemical shift, signal linewidth, and species distribution. Both micelles and reverse micelles interacted similarly with the complex and the ligand, suggesting that interaction is strong as anticipated by Coulombic attraction between the positively charged lipid head group and the negatively charged complex and deprotonated ligand. The nature of the model system was confirmed using dynamic light scattering studies and conductivity measurements. Interactions of the complex/ligand above and below the critical micelle concentration of micelle formation were different, with much stronger interactions when CTAB was in the form of a micelle. Both the complex and the ligand penetrated the lipid interface and were located near the charged head group. These studies demonstrate that a lipid-like interface affects the stability of the complex and raise the possibility that ligand exchange at the interface may be important for the mode of action for these systems. Combined, these studies support recently reported in vivo observations of BMOV penetration into 3T3-L1 adipocyte membranes and increased translocation of a glucose transporter to the plasma membrane.


Antidiabetic vanadium complex Drug interactions at membrane interfaces Cetyltrimethylammonium bromide Cationic surfactant Micelle 





Critical micelle concentration


Cetyltrimethylammonium bromide


Dynamic light scattering


4,4-Dimethyl-4-silapentane-1-sulfonic acid sodium salt


Reverse micelle


Sodium bis(2-ethylhexyl)sulfosuccinate (also abbreviated Aerosol-OT)





Supplementary material

775_2011_796_MOESM1_ESM.pdf (49 kb)
Supplementary material 1 (PDF 49 kb)


  1. 1.
    Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) J Inorg Biochem 103:554–558PubMedCrossRefGoogle Scholar
  2. 2.
    Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) Chem Rev 104:849–902PubMedCrossRefGoogle Scholar
  3. 3.
    Thompson KH (1999) Biofactors 10:43–51PubMedCrossRefGoogle Scholar
  4. 4.
    Rehder D (2003) Inorg Chem Commun 6:604–617CrossRefGoogle Scholar
  5. 5.
    Barrio DA, Etcheverry SB (2010) Curr Med Chem 17:3632–3642PubMedCrossRefGoogle Scholar
  6. 6.
    McLauchlan CC, Hooker JD, Jones MA, Dymon Z, Backhus EA, Youkhana MA, Manus LM (2010) J Inorg Biochem 104:274–281PubMedCrossRefGoogle Scholar
  7. 7.
    Li M, Smee JJ, Ding W, Crans DC (2009) J Inorg Biochem 103:585–589PubMedCrossRefGoogle Scholar
  8. 8.
    Gao XL, Lu LP, Zhu ML, Yuan CX, Ma JF, Fu XQ (2009) Acta Chim Sin 67:929–936Google Scholar
  9. 9.
    Yuan CX, Lu LP, Gao XL, Wu YB, Guo ML, Li Y, Fu XQ, Zhu ML (2009) J Biol Inorg Chem 14:841–851PubMedCrossRefGoogle Scholar
  10. 10.
    Roess DA, Smith SML, Winter P, Zhou J, Dou P, Baruah B, Trujillo AM, Levinger NE, Yang X, Barisas BG, Crans DC (2008) Chem Biodivers 5:1558–1570PubMedCrossRefGoogle Scholar
  11. 11.
    Sakurai H (2008) J Pharm Soc Jpn 128:317–322Google Scholar
  12. 12.
    Sakurai H, Yoshikawa Y, Yasui H (2008) Chem Soc Rev 37:2383–2392PubMedCrossRefGoogle Scholar
  13. 13.
    Rehder D, Pessoa JC, Geraldes CFGC, Castro MMCA, Kabanos T, Kiss T, Meier B, Micera G, Pettersson L, Rangel M, Salifoglou A, Turel I, Wang DR (2002) J Biol Inorg Chem 7:384–396PubMedCrossRefGoogle Scholar
  14. 14.
    Yang XG, Wang K, Lu JF, Crans DC (2003) Coord Chem Rev 237:103–111CrossRefGoogle Scholar
  15. 15.
    Yang XG, Yang XD, Yuan L, Wang K, Crans DC (2004) Pharm Res 21:1026–1033PubMedCrossRefGoogle Scholar
  16. 16.
    Faneca H, Figueiredo VA, Tomaz I, Goncalves G, Avecilla F, de Lima MCP, Geraldes CFGC, Pessoa JC, Castro MMCA (2009) J Inorg Biochem 103:601–608PubMedCrossRefGoogle Scholar
  17. 17.
    Xie MJ, Niu YF, Yang XD, Liu WP, Li L, Gao LH, Yan SP, Meng ZH (2010) Eur J Med Chem 45:6077–6084PubMedCrossRefGoogle Scholar
  18. 18.
    Islam MN, Kumbhar AA, Kumbhar AS, Zeller M, Butcher RJ, Dusane MB, Joshi BN (2010) Inorg Chem 49:8237–8246PubMedCrossRefGoogle Scholar
  19. 19.
    Hiromura M, Nakayama A, Adachi Y, Doi M, Sakurai H (2007) J Biol Inorg Chem 12:1275–1287PubMedCrossRefGoogle Scholar
  20. 20.
    Aureliano M, Henao F, Tiago T, Duarte RO, Moura JJG, Baruah B, Crans DC (2008) Inorg Chem 47:5677–5684PubMedCrossRefGoogle Scholar
  21. 21.
    Winter PW, Al-Qatati A, Wolf-Ringwall AL, Schoeberl S, Crans DC, Van Orden AK, Barisas BG, Roess DA (2011) (submitted)Google Scholar
  22. 22.
    Gupta S, Moulik SP (2008) J Pharm Sci 97:22–45PubMedCrossRefGoogle Scholar
  23. 23.
    Lawrence MJ, Rees GD (2000) Adv Drug Deliv Rev 45:89–121PubMedCrossRefGoogle Scholar
  24. 24.
    Langevin D (1992) Annu Rev Phys Chem 43:341–369CrossRefGoogle Scholar
  25. 25.
    Chevalier Y, Zemb T (1990) Rep Prog Phys 53:279–371CrossRefGoogle Scholar
  26. 26.
    Fendler JH (1987) Chem Rev 87:877–899CrossRefGoogle Scholar
  27. 27.
    Choi SY, Oh SG, Lee JS (2001) Coll Surf B 20:239–244CrossRefGoogle Scholar
  28. 28.
    Kreke PJ, Magid LJ, Gee JC (1996) Langmuir 12:699–705CrossRefGoogle Scholar
  29. 29.
    Vermathen M, Stiles P, Bachofer SJ, Simonis U (2002) Langmuir 18:1030–1042CrossRefGoogle Scholar
  30. 30.
    Gaidamauskas E, Cleaver DP, Chatterjee PB, Crans DC (2010) Langmuir 26:13153–13161PubMedCrossRefGoogle Scholar
  31. 31.
    Correa NM, Biasutti MA, Silber JJ (1995) J Colloid Interface Sci 172:71–76CrossRefGoogle Scholar
  32. 32.
    Falcone RD, Correa NM, Biasutti MA, Silber JJ (2000) Langmuir 16:3070–3076CrossRefGoogle Scholar
  33. 33.
    Rack JJ, McCleskey TM, Birnbaum ER (2002) J Phys Chem B 106:632–636CrossRefGoogle Scholar
  34. 34.
    Aureliano M, Crans DC (2009) J Inorg Biochem 103:536–546PubMedCrossRefGoogle Scholar
  35. 35.
    Stover J, Rithner CD, Inafuku RA, Crans DC, Levinger NE (2005) Langmuir 21:6250–6258PubMedCrossRefGoogle Scholar
  36. 36.
    Crans DC, Rithner CD, Baruah B, Gourley BL, Levinger NE (2006) J Am Chem Soc 128:4437–4445PubMedCrossRefGoogle Scholar
  37. 37.
    Goyal PS, Aswal VK (2001) Curr Sci India 80:972–979Google Scholar
  38. 38.
    Palazzo G, Carbone L, Colafemmina G, Angelico R, Ceglie A, Giustini M (2004) Phys Chem Chem Phys 6:1423–1429CrossRefGoogle Scholar
  39. 39.
    Palazzo G, Lopez F, Giustini M, Colafemmina G, Ceglie A (2003) J Phys Chem B 107:1924–1931CrossRefGoogle Scholar
  40. 40.
    Giustini M, Palazzo G, Colafemmina G, DellaMonica M, Giomini M, Ceglie A (1996) J Phys Chem 100:3190–3198CrossRefGoogle Scholar
  41. 41.
    Li F, Li GZ, Wang HQ, Xue QJ (1997) Colloids Surf A 127:89–96CrossRefGoogle Scholar
  42. 42.
    Grieser F, Drummond CJ (1988) J Phys Chem 92:5580–5593CrossRefGoogle Scholar
  43. 43.
    Song AM, Zhang JH, Zhang MH, Shen T, Tang JA (2000) Colloids Surf A 167:253–262CrossRefGoogle Scholar
  44. 44.
    Biswas S, Bhattacharya SC, Sen PK, Moulik SP (1999) J Photochem Photobiol A 123:121–128CrossRefGoogle Scholar
  45. 45.
    Mchedlov-Petrossyan NO, Vodolazkaya NA, Gurina YA, Sun WC, Gee KR (2010) J Phys Chem B 114:4551–4564PubMedCrossRefGoogle Scholar
  46. 46.
    Alargova RG, Danov KD, Petkov JT, Kralchevsky PA, Broze G, Mehreteab A (1997) Langmuir 13:5544–5551CrossRefGoogle Scholar
  47. 47.
    May S, Ben-Shaul A (2001) J Phys Chem B 105:630–640CrossRefGoogle Scholar
  48. 48.
    Angelico R, Palazzo G, Colafemmina G, Cirkel PA, Giustini M, Ceglie A (1998) J Phys Chem B 102:2883–2889CrossRefGoogle Scholar
  49. 49.
    Yuen VG, Orvig C, McNeill JH (1997) Am J Physiol Endocrinol Metab 35:E30–E35Google Scholar
  50. 50.
    Yuen VG, Caravan P, Gelmini L, Glover N, McNeill JH, Setyawati IA, Zhou Y, Orvig C (1997) J Inorg Biochem 68:109–116PubMedCrossRefGoogle Scholar
  51. 51.
    Crans DC, Trujillo AM, Bonetti S, Rithner CD, Baruah B, Levinger NE (2008) J Org Chem 73:9633–9640PubMedCrossRefGoogle Scholar
  52. 52.
    Castro MMCA, Geraldes CFGC, Gameiro P, Pereira E, Castro B, Rangel M (2000) J Inorg Biochem 80:177–179PubMedCrossRefGoogle Scholar
  53. 53.
    Caravan P, Gemini L, Glover N, Herring FG, Li H, McNeill JH, Rettig SJ, Setyawati IA, Shuter E, Sun Y, Tracey AS, Yuen VG, Orvig C (1995) J Am Chem Soc 117:12759–12770CrossRefGoogle Scholar
  54. 54.
    Ekwall P, Mandell L, Fontell K (1969) J Colloid Interface Sci 29:639–646PubMedCrossRefGoogle Scholar
  55. 55.
    Rodenas E, Valiente M (1992) Colloids Surf 62:289–295CrossRefGoogle Scholar
  56. 56.
    Vautier-Giongo C, Bales BL (2003) J Phys Chem B 107:5398–5403CrossRefGoogle Scholar
  57. 57.
    Harris RK, Becker ED, De Menezes SMC, Granger P, Hoffman RE, Zilm KW (2008) Pure Appl Chem 80:59–84CrossRefGoogle Scholar
  58. 58.
    Modaressi A, Sifaoui H, Grzesiak B, Solimando R, Domanska U, Rogalski M (2007) Colloids Surf A 296:104–108CrossRefGoogle Scholar
  59. 59.
    Pettersson L, Andersson I, Hedman B (1985) Chem Scr 25:309–317Google Scholar
  60. 60.
    Pettersson L, Hedman B, Andersson I, Ingri N (1983) Chem Scr 22:254–264Google Scholar
  61. 61.
    Pettersson L, Andersson I, Gorzsas A (2003) Coord Chem Rev 237:77–87CrossRefGoogle Scholar
  62. 62.
    Crans DC, Rithner CD, Theisen LA (1990) J Am Chem Soc 112:2901–2908CrossRefGoogle Scholar
  63. 63.
    Saponja JA, Vogel HJ (1996) J Inorg Biochem 62:253–270PubMedCrossRefGoogle Scholar
  64. 64.
    Crans DC, Baruah B, Ross A, Levinger NE (2009) Coord Chem Rev 253:2178–2185CrossRefGoogle Scholar
  65. 65.
    Wittenkeller L, Abraha A, Ramasamy R, Defreitas DM, Theisen LA, Crans DC (1991) J Am Chem Soc 113:7872–7881CrossRefGoogle Scholar
  66. 66.
    Rico I, Lattes A (1986) J Phys Chem 90:5870–5872CrossRefGoogle Scholar
  67. 67.
    Treiner C, Makayssi A (1992) Langmuir 8:794–800CrossRefGoogle Scholar
  68. 68.
    Szakacs Z, Kraszni M, Noszal B (2004) Anal Bioanal Chem 378:1428–1448PubMedCrossRefGoogle Scholar
  69. 69.
    Elvingson K, Baro AG, Pettersson L (1996) Inorg Chem 35:3388–3393PubMedCrossRefGoogle Scholar
  70. 70.
    Baruah B, Roden J, Sedgwick M, Correa MN, Crans DC, Levinger NE (2006) J Am Chem Soc 128:12758–12765PubMedCrossRefGoogle Scholar
  71. 71.
    Setyawati IA, Thompson KH, Yuen VG, Sun Y, Battell M, Lyster DM, Vo C, Ruth TJ, Zeisler S, McNeill JH, Orvig C (1998) J Appl Physiol 84:569–575PubMedGoogle Scholar
  72. 72.
    Thompson KH, Liboiron BD, Bellman YSKDD, Setyawati IA, Patrick BO, Karunaratne V, Rawji G, Wheeler J, Sutton K, Bhanot S, Cassidy C, McNeill JH, Yuen VG, Orvig C (2003) J Biol Inorg Chem 8:66–74PubMedCrossRefGoogle Scholar
  73. 73.
    Kiss T, Jakusch T, Hollender D, Dornyei A, Enyedy EA, Pessoa JC, Sakurai H, Sanz-Medel A (2008) Coord Chem Rev 252:1153–1162CrossRefGoogle Scholar
  74. 74.
    Pessoa JC, Tomaz I (2010) Curr Med Chem 17:3701–3738PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2011

Authors and Affiliations

  1. 1.Department of ChemistryColorado State UniversityFort CollinsUSA
  2. 2.Department of Biomedical SciencesColorado State UniversityFort CollinsUSA
  3. 3.Vilnius University Institute of BiochemistryVilniusLithuania
  4. 4.Department of Chemistry and BiochemistryKennesaw State UniversityKennesawUSA

Personalised recommendations